Feature Based Plot Classification using a Bayes Algorithm

Many fielded state-of-the-art radars suffer from excessive false alarm rates, at least at times. The radar concerned in this paper is intended for automatic tracking of objects for maritime surface surveillance, one of the difficult scenarios for automatic tracking. The algorithm first corrects for...

Full description

Saved in:
Bibliographic Details
Published in2006 European Radar Conference : Manchester, United Kingdom, 13-15 September 2006 pp. 41 - 44
Main Author Genderen, Piet Van
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2006
Subjects
Online AccessGet full text
ISBN9782960055177
2960055179
DOI10.1109/EURAD.2006.280268

Cover

Abstract Many fielded state-of-the-art radars suffer from excessive false alarm rates, at least at times. The radar concerned in this paper is intended for automatic tracking of objects for maritime surface surveillance, one of the difficult scenarios for automatic tracking. The algorithm first corrects for the ship's motion and then builds a plot map, which stores the long term probability density functions of features of the observed echoes. Through the Bayes algorithm the conditional probability that a plot belongs to each of the four classes "moving clutter", "fixed clutter", "ship" or "other object" is established. The result is a significant reduction of the clutter plots and only a modest reduction of the ships' plots. Although the method presented here is intended as a classifier for prioritizing plots in the case of data overload, it could also be used in the initiation phase of new tracks in order to classify tracks in either of the mentioned classes
AbstractList Many fielded state-of-the-art radars suffer from excessive false alarm rates, at least at times. The radar concerned in this paper is intended for automatic tracking of objects for maritime surface surveillance, one of the difficult scenarios for automatic tracking. The algorithm first corrects for the ship's motion and then builds a plot map, which stores the long term probability density functions of features of the observed echoes. Through the Bayes algorithm the conditional probability that a plot belongs to each of the four classes "moving clutter", "fixed clutter", "ship" or "other object" is established. The result is a significant reduction of the clutter plots and only a modest reduction of the ships' plots. Although the method presented here is intended as a classifier for prioritizing plots in the case of data overload, it could also be used in the initiation phase of new tracks in order to classify tracks in either of the mentioned classes
Author Genderen, Piet Van
Author_xml – sequence: 1
  givenname: Piet Van
  surname: Genderen
  fullname: Genderen, Piet Van
  organization: Delft Technical University, Dept of EEMCS, Mekelweg 4, P.O. Box 5031, 2600 GA Delft, The Netherlands, P.vanGenderen@IRCTR.TUDelft.NL, tel +31 15 278 5055
BookMark eNotjNFKwzAUQAMqqLMfIL7kB1pvkt4meZx1U2GgyHweaXozI10rTfewv7cwz8t5OZxbdtkPPTF2L6AQAuzj6utz-VxIgKqQBmRlLlhmtZG2AkAUWl-zLKUfmFEWbaVvmF2Tm44j8SeXqOUf3TDxunMpxRC9m-LQ82OK_Z67uThR4stuP4xx-j7csavgukTZvxdsu15t69d88_7yVi83eRQap9y3pWxtCQ2iRNMar0SLotTNLDJUCSytChKd8V4juKCkhACoQmPJW7VgD-dtJKLd7xgPbjztSkAjUao_XrRGbg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EURAD.2006.280268
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 44
ExternalDocumentID 4058252
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cd42d940b55258d8c31d5147b1d5e8e615493f25a8cc750af3220f053fb9ec93
IEDL.DBID RIE
ISBN 9782960055177
2960055179
IngestDate Wed Aug 27 06:03:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cd42d940b55258d8c31d5147b1d5e8e615493f25a8cc750af3220f053fb9ec93
PageCount 4
ParticipantIDs ieee_primary_4058252
PublicationCentury 2000
PublicationDate 2006-Sept.
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-Sept.
PublicationDecade 2000
PublicationTitle 2006 European Radar Conference : Manchester, United Kingdom, 13-15 September 2006
PublicationTitleAbbrev EURAD
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395967
Score 1.3682466
Snippet Many fielded state-of-the-art radars suffer from excessive false alarm rates, at least at times. The radar concerned in this paper is intended for automatic...
SourceID ieee
SourceType Publisher
StartPage 41
SubjectTerms Bayes procedure
clutter
Detectors
Doppler radar
feature maps
Marine vehicles
Plot classification
Radar antennas
Radar clutter
Radar detection
Radar tracking
Sea surface
Surveillance
Testing
Title Feature Based Plot Classification using a Bayes Algorithm
URI https://ieeexplore.ieee.org/document/4058252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gNy8-wPjOHjxaKG233T2iQogJhhhIuJF9DEhUarA96K93psX6iAdP3TabZreT7Xzz-oaxCz9EmysyMYX-wYuE9j2lJVVydRwF0mQMVOA8vIsHk-h2KqY1dlnVwgBAkXwGLRoWsXyX2pxcZW0EF2jQ4A93K5FxWatV-VP8UAkVUwu-AEG5L4h6qiTYqe6TTVSz46t2b3LfvSljEYFEO0T-6K5SKJf-Dht-LqvMKXls5Zlp2fdfjI3_Xfcua36V8fFRpaD2WA1W-2z7GwNhgymCgPka-BVqM8dHT2nGiz6ZlEFUCI1TZvyCa5zxBq-8-7RI18vs4bnJxv3e-HrgbbopeEuECJlnXRQ4FflGiEBIJy1KA9FSYvACEmLiagvngdDSWoQReo5H3Z_jGZ0bBVaFB6y-SldwyLhTRqMlSegCjTtljI0T0NppfIcNQR6xBn2D2UvJlzHbbP_478cnKLHCrUF5W6esnq1zOENFn5nzQsIfeBiiAQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPBgvPsD4tgePFkq7W3aPqBBUIMRAwo3sY4pEpAbbg_56Z1usj3jw1G2zaXY72c43r28IufACtLmoCm3oH1zKpOcKyW0lV8PYQBoPwRY49wdhd0zvJmxSIpdFLQwAZMlnULPDLJZvYp1aV1kdwQUaNPjD3WCUUpZXaxUeFS8QTIS2CZ-PsNxjlnwqp9gp7pvruGbDE_X2-KF1k0cjfI6WCP_RXyVTL51t0v9cWJ5V8lRLE1XT7784G_-78h1S_Srkc4aFitolJVjuka1vHIQVIiwITFfgXKE-M85wESdO1inT5hBlYnNsbvzMkTjjDV6d1mIWr-bJ43OVjDrt0XXXXfdTcOcIEhJXG-obQT3FmM-44RrlgXipqfACHELL1hZEPpNcawQSMsLD7kV4SiMlQItgn5SX8RIOiGOEkmhLWnyB5p1QSodNkNJIfIcOgB-Siv0G05ecMWO63v7R34_PyWZ31O9Ne7eD-2OUXubksFlcJ6ScrFI4RbWfqLNM2h8qqKVO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+European+Radar+Conference+%3A+Manchester%2C+United+Kingdom%2C+13-15+September+2006&rft.atitle=Feature+Based+Plot+Classification+using+a+Bayes+Algorithm&rft.au=Genderen%2C+Piet+Van&rft.date=2006-09-01&rft.pub=IEEE&rft.isbn=9782960055177&rft.spage=41&rft.epage=44&rft_id=info:doi/10.1109%2FEURAD.2006.280268&rft.externalDocID=4058252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9782960055177/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9782960055177/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9782960055177/sc.gif&client=summon&freeimage=true