Intrusion feature selection using Modified Heuristic Greedy Algorithm of Itemset

This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from...

Full description

Saved in:
Bibliographic Details
Published in2013 13th International Symposium on Communications and Information Technologies (ISCIT) pp. 627 - 632
Main Authors Onpans, Janya, Rasmequan, Suwanna, Jantarakongkul, Benchaporn, Chinnasarn, Krisana, Rodtook, Annupan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text
DOI10.1109/ISCIT.2013.6645936

Cover

Abstract This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from original Heuristic Greedy Algorithm of Itemset (HGIS) to increase efficiency for finding proper feature. In our work, we compare our result with the common method of feature selection is which the Chi-Square (Chi 2 ) feature selection. There are 4 main steps in our experiment: Firstly, we start with data pre-processing to discard unnecessary attributes. Secondly, MHGIS feature selection and Chi 2 feature selection have been employed on the pre-processed data, to reduce the number of attributes. Thirdly, we measure the recognition performance by using supervised learning algorithms which are C4.5, BPNN, RBF and SVM. Lastly, we evaluate the results received from MHGIS and Chi 2 . From the KDDCup99 dataset, we got 13,499 randomly sampling patterns with 34 data dimensions. With the use of MHGIS and Chi 2 algorithms, we obtain 14 and 26 features respectively. The result shows that, the classification accuracies measure by C4.5 over the MHGIS selection algorithm produces better accuracies as compare to the Chi 2 feature selection and HGIS feature selection over all types of classification methods.
AbstractList This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from original Heuristic Greedy Algorithm of Itemset (HGIS) to increase efficiency for finding proper feature. In our work, we compare our result with the common method of feature selection is which the Chi-Square (Chi 2 ) feature selection. There are 4 main steps in our experiment: Firstly, we start with data pre-processing to discard unnecessary attributes. Secondly, MHGIS feature selection and Chi 2 feature selection have been employed on the pre-processed data, to reduce the number of attributes. Thirdly, we measure the recognition performance by using supervised learning algorithms which are C4.5, BPNN, RBF and SVM. Lastly, we evaluate the results received from MHGIS and Chi 2 . From the KDDCup99 dataset, we got 13,499 randomly sampling patterns with 34 data dimensions. With the use of MHGIS and Chi 2 algorithms, we obtain 14 and 26 features respectively. The result shows that, the classification accuracies measure by C4.5 over the MHGIS selection algorithm produces better accuracies as compare to the Chi 2 feature selection and HGIS feature selection over all types of classification methods.
Author Chinnasarn, Krisana
Rasmequan, Suwanna
Jantarakongkul, Benchaporn
Onpans, Janya
Rodtook, Annupan
Author_xml – sequence: 1
  givenname: Janya
  surname: Onpans
  fullname: Onpans, Janya
  email: mai.janya@gmail.com
  organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand
– sequence: 2
  givenname: Suwanna
  surname: Rasmequan
  fullname: Rasmequan, Suwanna
  email: rsuwanna@buu.ac.th
  organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand
– sequence: 3
  givenname: Benchaporn
  surname: Jantarakongkul
  fullname: Jantarakongkul, Benchaporn
  email: benchapornj@yahoo.com
  organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand
– sequence: 4
  givenname: Krisana
  surname: Chinnasarn
  fullname: Chinnasarn, Krisana
  email: krisana@buu.ac.th
  organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand
– sequence: 5
  givenname: Annupan
  surname: Rodtook
  fullname: Rodtook, Annupan
  email: annupan@ru.ac.th
  organization: Dept. of Comput. Sci., Ramkhamhaeng Univ., Bangkok, Thailand
BookMark eNotj8tKAzEYRiMoqHVeQDd5gY7J5DZZlkHbgYqCdV1y-adG5iJJZtG3t9KuzsdZfHDu0fU4jYDQIyUlpUQ_t59NuysrQlkpJReayStUaFVTLhUToibsFhUp_RBCqJJS0OoOfbRjjnMK04g7MHmOgBP04PK_OfnxgN8mH7oAHm9gjiHl4PA6AvgjXvWHKYb8PeCpw22GIUF-QDed6RMUFy7Q1-vLrtkst-_rtlltl4EqkZfOdM6LmkmmiLegeFVbo5UFYjU3TnCulWAGNPUds47xSp-2ldxVXhJO2QI9nX8DAOx_YxhMPO4v3ewPzWtQ5Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCIT.2013.6645936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467355803
1467355801
9781467355780
146735578X
EndPage 632
ExternalDocumentID 6645936
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cafcd5836370dbe7428ba97be0b94ac5449753ae91df3bc3429e91b64c2d60413
IEDL.DBID RIE
IngestDate Wed Aug 27 04:57:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cafcd5836370dbe7428ba97be0b94ac5449753ae91df3bc3429e91b64c2d60413
PageCount 6
ParticipantIDs ieee_primary_6645936
PublicationCentury 2000
PublicationDate 2013-Sept.
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-Sept.
PublicationDecade 2010
PublicationTitle 2013 13th International Symposium on Communications and Information Technologies (ISCIT)
PublicationTitleAbbrev ISCIT
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766512
Score 1.5292537
Snippet This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method...
SourceID ieee
SourceType Publisher
StartPage 627
SubjectTerms Accuracy
Feature extraction
Feature Selection
Greedy algorithms
Heuristc Greedy
Intrusion detection
Itemsets
Network Intrusion Detection
Pattern Recognition
Principal component analysis
Support vector machines
Title Intrusion feature selection using Modified Heuristic Greedy Algorithm of Itemset
URI https://ieeexplore.ieee.org/document/6645936
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjy6MdauXY-GSMAEQyIk3Mj6C4m6GRkH_et97QZE48Fb06Xp8nr4Xl-_73sI3Sg4Vi1kGlhObEABcQJBZBxkWkJ6EGtifTOY8SMbzujDPJk30O1OC2OM8eQzE7qhf8vXhdq4UlmXOecTwpqoyVNWabX29RTOGIDXVhcTie7oqT-aOvIWCeuFPzqoeAAZHKLxduuKN_ISbkoZqq9froz__bcj1NlL9fBkB0LHqGHyNpqMcqelgJBja7xzJ177fjduxjHdl3hc6JWF9BMPzaYya8aOgqM_8d3rsvhYlc9vuLDYVfLXpuyg2eB-2h8GdeuEYAX5QBmozCqdpIQRHmlp4P6bykxwaSIpaKYSSp2gNjOipy2RigAqwVgyqmLNIgC2E9TKi9ycIiwzuDVaoXmi4LOxgmitCO9Z3pOEpfQMtV00Fu-VO8aiDsT539MX6CD2DSUcS-sStSAa5gpgvZTX_jy_AaGBo_U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0jR2nGREFVUKTVWJVupWxV-lAhJE0wF-PWenHwIxsFmOLEfn4Z3P771D6EbAscqYR44OiXYoII4TE-47meSQHviSaNsMJh2wZEwfJsGkhm43WhillCWfKdcM7Vu-LMTSlMpazDifELaDdgNKaVCptbYVlZAxgK-1MsaLW72nTm9k6FvEXS390UPFQkj3AKXrzSvmyIu7LLkrvn75Mv737w5RcyvWw8MNDB2hmsobaNjLjZoCgo61st6deGE73pgZw3Wf4bSQcw0JKE7UsrJrxoaEIz_x3eus-JiXz2-40NjU8heqbKJx937USZxV8wRnDhlB6YhMCxlEhJHQk1zBDTjiWRxy5fGYZgICaCS1mYrbUhMuCOASjDmjwpfMA2g7RvW8yNUJwjyDe6OOZRgI-Kx0TKQUJGzrsM0Ji-gpaphoTN8rf4zpKhBnf09fo71klPan_d7g8Rzt-7a9hOFsXaA6REZdAsiX_Mqe7TdmJ6dC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+13th+International+Symposium+on+Communications+and+Information+Technologies+%28ISCIT%29&rft.atitle=Intrusion+feature+selection+using+Modified+Heuristic+Greedy+Algorithm+of+Itemset&rft.au=Onpans%2C+Janya&rft.au=Rasmequan%2C+Suwanna&rft.au=Jantarakongkul%2C+Benchaporn&rft.au=Chinnasarn%2C+Krisana&rft.date=2013-09-01&rft.pub=IEEE&rft.spage=627&rft.epage=632&rft_id=info:doi/10.1109%2FISCIT.2013.6645936&rft.externalDocID=6645936