Intrusion feature selection using Modified Heuristic Greedy Algorithm of Itemset
This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from...
Saved in:
| Published in | 2013 13th International Symposium on Communications and Information Technologies (ISCIT) pp. 627 - 632 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2013
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ISCIT.2013.6645936 |
Cover
| Abstract | This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from original Heuristic Greedy Algorithm of Itemset (HGIS) to increase efficiency for finding proper feature. In our work, we compare our result with the common method of feature selection is which the Chi-Square (Chi 2 ) feature selection. There are 4 main steps in our experiment: Firstly, we start with data pre-processing to discard unnecessary attributes. Secondly, MHGIS feature selection and Chi 2 feature selection have been employed on the pre-processed data, to reduce the number of attributes. Thirdly, we measure the recognition performance by using supervised learning algorithms which are C4.5, BPNN, RBF and SVM. Lastly, we evaluate the results received from MHGIS and Chi 2 . From the KDDCup99 dataset, we got 13,499 randomly sampling patterns with 34 data dimensions. With the use of MHGIS and Chi 2 algorithms, we obtain 14 and 26 features respectively. The result shows that, the classification accuracies measure by C4.5 over the MHGIS selection algorithm produces better accuracies as compare to the Chi 2 feature selection and HGIS feature selection over all types of classification methods. |
|---|---|
| AbstractList | This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method can be use as an alternative method to gain the proper attributes for the proposed domain data: Network Intrusion Data. MHGIS is modified from original Heuristic Greedy Algorithm of Itemset (HGIS) to increase efficiency for finding proper feature. In our work, we compare our result with the common method of feature selection is which the Chi-Square (Chi 2 ) feature selection. There are 4 main steps in our experiment: Firstly, we start with data pre-processing to discard unnecessary attributes. Secondly, MHGIS feature selection and Chi 2 feature selection have been employed on the pre-processed data, to reduce the number of attributes. Thirdly, we measure the recognition performance by using supervised learning algorithms which are C4.5, BPNN, RBF and SVM. Lastly, we evaluate the results received from MHGIS and Chi 2 . From the KDDCup99 dataset, we got 13,499 randomly sampling patterns with 34 data dimensions. With the use of MHGIS and Chi 2 algorithms, we obtain 14 and 26 features respectively. The result shows that, the classification accuracies measure by C4.5 over the MHGIS selection algorithm produces better accuracies as compare to the Chi 2 feature selection and HGIS feature selection over all types of classification methods. |
| Author | Chinnasarn, Krisana Rasmequan, Suwanna Jantarakongkul, Benchaporn Onpans, Janya Rodtook, Annupan |
| Author_xml | – sequence: 1 givenname: Janya surname: Onpans fullname: Onpans, Janya email: mai.janya@gmail.com organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand – sequence: 2 givenname: Suwanna surname: Rasmequan fullname: Rasmequan, Suwanna email: rsuwanna@buu.ac.th organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand – sequence: 3 givenname: Benchaporn surname: Jantarakongkul fullname: Jantarakongkul, Benchaporn email: benchapornj@yahoo.com organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand – sequence: 4 givenname: Krisana surname: Chinnasarn fullname: Chinnasarn, Krisana email: krisana@buu.ac.th organization: Fac. of Inf., Burapha Univ., Chonburi, Thailand – sequence: 5 givenname: Annupan surname: Rodtook fullname: Rodtook, Annupan email: annupan@ru.ac.th organization: Dept. of Comput. Sci., Ramkhamhaeng Univ., Bangkok, Thailand |
| BookMark | eNotj8tKAzEYRiMoqHVeQDd5gY7J5DZZlkHbgYqCdV1y-adG5iJJZtG3t9KuzsdZfHDu0fU4jYDQIyUlpUQ_t59NuysrQlkpJReayStUaFVTLhUToibsFhUp_RBCqJJS0OoOfbRjjnMK04g7MHmOgBP04PK_OfnxgN8mH7oAHm9gjiHl4PA6AvgjXvWHKYb8PeCpw22GIUF-QDed6RMUFy7Q1-vLrtkst-_rtlltl4EqkZfOdM6LmkmmiLegeFVbo5UFYjU3TnCulWAGNPUds47xSp-2ldxVXhJO2QI9nX8DAOx_YxhMPO4v3ewPzWtQ5Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISCIT.2013.6645936 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467355803 1467355801 9781467355780 146735578X |
| EndPage | 632 |
| ExternalDocumentID | 6645936 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-cafcd5836370dbe7428ba97be0b94ac5449753ae91df3bc3429e91b64c2d60413 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 04:57:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-cafcd5836370dbe7428ba97be0b94ac5449753ae91df3bc3429e91b64c2d60413 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6645936 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Sept. |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 13th International Symposium on Communications and Information Technologies (ISCIT) |
| PublicationTitleAbbrev | ISCIT |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001766512 |
| Score | 1.5292537 |
| Snippet | This paper proposes the Modified Heuristic Greedy Algorithm of Itemset (MHGIS) as a feature selection method for Network Intrusion Data. The proposed method... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 627 |
| SubjectTerms | Accuracy Feature extraction Feature Selection Greedy algorithms Heuristc Greedy Intrusion detection Itemsets Network Intrusion Detection Pattern Recognition Principal component analysis Support vector machines |
| Title | Intrusion feature selection using Modified Heuristic Greedy Algorithm of Itemset |
| URI | https://ieeexplore.ieee.org/document/6645936 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjy6MdauXY-GSMAEQyIk3Mj6C4m6GRkH_et97QZE48Fb06Xp8nr4Xl-_73sI3Sg4Vi1kGlhObEABcQJBZBxkWkJ6EGtifTOY8SMbzujDPJk30O1OC2OM8eQzE7qhf8vXhdq4UlmXOecTwpqoyVNWabX29RTOGIDXVhcTie7oqT-aOvIWCeuFPzqoeAAZHKLxduuKN_ISbkoZqq9froz__bcj1NlL9fBkB0LHqGHyNpqMcqelgJBja7xzJ177fjduxjHdl3hc6JWF9BMPzaYya8aOgqM_8d3rsvhYlc9vuLDYVfLXpuyg2eB-2h8GdeuEYAX5QBmozCqdpIQRHmlp4P6bykxwaSIpaKYSSp2gNjOipy2RigAqwVgyqmLNIgC2E9TKi9ycIiwzuDVaoXmi4LOxgmitCO9Z3pOEpfQMtV00Fu-VO8aiDsT539MX6CD2DSUcS-sStSAa5gpgvZTX_jy_AaGBo_U |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0jR2nGREFVUKTVWJVupWxV-lAhJE0wF-PWenHwIxsFmOLEfn4Z3P771D6EbAscqYR44OiXYoII4TE-47meSQHviSaNsMJh2wZEwfJsGkhm43WhillCWfKdcM7Vu-LMTSlMpazDifELaDdgNKaVCptbYVlZAxgK-1MsaLW72nTm9k6FvEXS390UPFQkj3AKXrzSvmyIu7LLkrvn75Mv737w5RcyvWw8MNDB2hmsobaNjLjZoCgo61st6deGE73pgZw3Wf4bSQcw0JKE7UsrJrxoaEIz_x3eus-JiXz2-40NjU8heqbKJx937USZxV8wRnDhlB6YhMCxlEhJHQk1zBDTjiWRxy5fGYZgICaCS1mYrbUhMuCOASjDmjwpfMA2g7RvW8yNUJwjyDe6OOZRgI-Kx0TKQUJGzrsM0Ji-gpaphoTN8rf4zpKhBnf09fo71klPan_d7g8Rzt-7a9hOFsXaA6REZdAsiX_Mqe7TdmJ6dC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+13th+International+Symposium+on+Communications+and+Information+Technologies+%28ISCIT%29&rft.atitle=Intrusion+feature+selection+using+Modified+Heuristic+Greedy+Algorithm+of+Itemset&rft.au=Onpans%2C+Janya&rft.au=Rasmequan%2C+Suwanna&rft.au=Jantarakongkul%2C+Benchaporn&rft.au=Chinnasarn%2C+Krisana&rft.date=2013-09-01&rft.pub=IEEE&rft.spage=627&rft.epage=632&rft_id=info:doi/10.1109%2FISCIT.2013.6645936&rft.externalDocID=6645936 |