Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration

Visual and inertial sensors, in combination, are well-suited for many robot navigation and mapping tasks. However, correct data fusion, and hence overall system performance, depends on accurate calibration of the 6-DOF transform between the sensors (one or more camera(s) and an inertial measurement...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation pp. 360 - 368
Main Authors Kelly, J., Sukhatme, G.S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2009
Subjects
Online AccessGet full text
ISBN1424448085
9781424448081
DOI10.1109/CIRA.2009.5423178

Cover

Abstract Visual and inertial sensors, in combination, are well-suited for many robot navigation and mapping tasks. However, correct data fusion, and hence overall system performance, depends on accurate calibration of the 6-DOF transform between the sensors (one or more camera(s) and an inertial measurement unit). Obtaining this calibration information is typically difficult and time-consuming. In this paper, we describe an algorithm, based on the unscented Kalman filter (UKF), for camera-IMU simultaneous localization, mapping and sensor relative pose self-calibration. We show that the sensor-to-sensor transform, the IMU gyroscope and accelerometer biases, the local gravity vector, and the metric scene structure can all be recovered from camera and IMU measurements alone. This is possible without any prior knowledge about the environment in which the robot is operating. We present results from experiments with a monocular camera and a low-cost solid-state IMU, which demonstrate accurate estimation of the calibration parameters and the local scene structure.
AbstractList Visual and inertial sensors, in combination, are well-suited for many robot navigation and mapping tasks. However, correct data fusion, and hence overall system performance, depends on accurate calibration of the 6-DOF transform between the sensors (one or more camera(s) and an inertial measurement unit). Obtaining this calibration information is typically difficult and time-consuming. In this paper, we describe an algorithm, based on the unscented Kalman filter (UKF), for camera-IMU simultaneous localization, mapping and sensor relative pose self-calibration. We show that the sensor-to-sensor transform, the IMU gyroscope and accelerometer biases, the local gravity vector, and the metric scene structure can all be recovered from camera and IMU measurements alone. This is possible without any prior knowledge about the environment in which the robot is operating. We present results from experiments with a monocular camera and a low-cost solid-state IMU, which demonstrate accurate estimation of the calibration parameters and the local scene structure.
Author Kelly, J.
Sukhatme, G.S.
Author_xml – sequence: 1
  givenname: J.
  surname: Kelly
  fullname: Kelly, J.
  organization: Robotic Embedded Syst. Lab., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: G.S.
  surname: Sukhatme
  fullname: Sukhatme, G.S.
  organization: Robotic Embedded Syst. Lab., Univ. of Southern California, Los Angeles, CA, USA
BookMark eNpFkM1Kw0AUhUe0oK19AHGTB3Di_CWZWZZgtVAQRMVdufMTGZlMQiZZ6NPb2oJnc-45fNzFmaOL2EWH0A0lOaVE3debl1XOCFF5IRinlTxDcyqYEEISxc__gyxmaH4AFSkEpZdomdIX2UsUnFTqCn28-zRBwD66YfQQsuTbKYwQXTelLHQGgv-B0XfxLmuh7338zCDaLLmYugGPHT5e-yI0-EDr4Q-_RrMGQnLLky_Q2_rhtX7C2-fHTb3aYk-rYsRGcQAJnDIrOaGaVtoSA4ppSoQE0ujSWV4waUvrDGNKNqXR2hkDQjbW8gW6Pf71zrldP_gWhu_daRb-CzucWLg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIRA.2009.5423178
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424448093
9781424448098
EndPage 368
ExternalDocumentID 5423178
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-c93aa8a312d8301b17bd0ca92b1048a0fb6ed3528d6dec2298f6cbbecca48fdd3
IEDL.DBID RIE
ISBN 1424448085
9781424448081
IngestDate Wed Aug 27 03:04:38 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009905411
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c93aa8a312d8301b17bd0ca92b1048a0fb6ed3528d6dec2298f6cbbecca48fdd3
PageCount 9
ParticipantIDs ieee_primary_5423178
PublicationCentury 2000
PublicationDate 2009-Dec.
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-Dec.
PublicationDecade 2000
PublicationTitle 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation
PublicationTitleAbbrev CIRA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453079
Score 1.6375023
Snippet Visual and inertial sensors, in combination, are well-suited for many robot navigation and mapping tasks. However, correct data fusion, and hence overall...
SourceID ieee
SourceType Publisher
StartPage 360
SubjectTerms Calibration
Cameras
Layout
Navigation
Robot sensing systems
Robot vision systems
Sensor fusion
Sensor systems
Simultaneous localization and mapping
System performance
Title Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration
URI https://ieeexplore.ieee.org/document/5423178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCbbTp7UbMbf6cHj2EpLCxzN4qImM8Y4s9sC5WEWZ2vW9uJfL9BuRuPBGxBCCA_yPeB930PoKo4k9YyeUAuDKbAQ80RozDQkTBBIlGfxzx7S2zm9XySLDhruuDAA4IPPYOSK_i9fF1ntnsrGicV-wngXdRlPG67W7j3FuiZ2u4otd4ty60tsJZ3aOml_NUkoxpO7p-tGrbId9Ed2FQ8u0300206riSl5G9WVGmWfvxQb_zvvAzT4pvEFjzuAOkQdyPto8bIqa7nGjvRnT_c6KFcuqFDmUNRl4KGtpWYOg3fp1BteA5nroLT33WKDqwI3JduwNtj1Vs0mGqD59OZ5covb9Ap4ZX2GCmcilpLLmESa22OuCFM6zKSIlL2icRkalYJ24i861ZBFkeAmzZS3OeVG6_gI9fIih2MUGO00b2jCBQ0p00pIIGCs5wjMCeKJE9R3q7L8aBQ0lu2CnP7dfIb2ojZLQ0jOUa_a1HBhob9Sl97mX2fUrA4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZzHvSkZjP-tgePYystbeFoFpep22LMZnZboLyaxdmatb341wu0m9F48AaEEMKDvA943_cQuvE9QS2jx1U8wRQiF7OAKxwpCCJOIJCWxT-ehMMZfZgH8wbqbLkwAGCDz6BrivYvX2VxaZ7KeoH2_SRiO2g3oJQGFVtr-6KiwYnesHzD3qJMo4mNqFNdJ_W_JnF5r3__fFvpVdbD_sivYt3L4ACNNxOrokreumUhu_HnL83G_878ELW_iXzO09ZFHaEGpC00f1nmpVhhQ_vT53vl5EsTVihSyMrcsc6tJmd2nHdh9BteHZEqJ9c33myNiwxXJd2wSrDpLatt1Eazwd20P8R1ggW81KihwDH3hWDCJ55i-qBLEknlxoJ7Ul_SmHATGYIy8i8qVBB7HmdJGEtrdcoSpfxj1EyzFE6QkyijekMDxqlLIyW5AAKJxo4QGUk8fopaZlUWH5WGxqJekLO_m6_R3nA6Hi1G95PHc7Tv1TkbXHKBmsW6hEsNBAp5Ze3_BZr-r1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Symposium+on+Computational+Intelligence+in+Robotics+and+Automation&rft.atitle=Visual-inertial+simultaneous+localization%2C+mapping+and+sensor-to-sensor+self-calibration&rft.au=Kelly%2C+J.&rft.au=Sukhatme%2C+G.S.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424448081&rft.spage=360&rft.epage=368&rft_id=info:doi/10.1109%2FCIRA.2009.5423178&rft.externalDocID=5423178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/sc.gif&client=summon&freeimage=true