Distributed microphone array processing for speech source separation with classifier fusion
We propose a new approach for clustering and separating competing speech signals using a distributed microphone array (DMA). This approach can be viewed as an extension of expectation-maximization (EM)-based source separation to DMAs. To achieve distributed processing, we assume the conditional inde...
Saved in:
| Published in | 2012 IEEE International Workshop on Machine Learning for Signal Processing pp. 1 - 6 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2012
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1467310247 9781467310246 |
| ISSN | 1551-2541 |
| DOI | 10.1109/MLSP.2012.6349782 |
Cover
| Abstract | We propose a new approach for clustering and separating competing speech signals using a distributed microphone array (DMA). This approach can be viewed as an extension of expectation-maximization (EM)-based source separation to DMAs. To achieve distributed processing, we assume the conditional independence (with respect to sources' activities) of the normalized recordings of different nodes. By doing so, only the posterior probabilities of sources' activities need to be shared between nodes. Consequently, the EM algorithm is formulated such that at the expectation step, local posterior probabilities are estimated locally and shared between nodes. In the maximization step, every node fuses the received probabilities via either product or sum rules and estimates its local parameters. We show that, even if we make binary decisions (presence/ absence of speech) during EM iterations instead of transmitting continuous posterior probability values, we can achieve separation without causing significant speech distortion. Our preliminary investigations demonstrate that the proposed processing technique approaches the centralized solution and can outperform Oracle best node-wise clustering in terms of objective source separation metrics. |
|---|---|
| AbstractList | We propose a new approach for clustering and separating competing speech signals using a distributed microphone array (DMA). This approach can be viewed as an extension of expectation-maximization (EM)-based source separation to DMAs. To achieve distributed processing, we assume the conditional independence (with respect to sources' activities) of the normalized recordings of different nodes. By doing so, only the posterior probabilities of sources' activities need to be shared between nodes. Consequently, the EM algorithm is formulated such that at the expectation step, local posterior probabilities are estimated locally and shared between nodes. In the maximization step, every node fuses the received probabilities via either product or sum rules and estimates its local parameters. We show that, even if we make binary decisions (presence/ absence of speech) during EM iterations instead of transmitting continuous posterior probability values, we can achieve separation without causing significant speech distortion. Our preliminary investigations demonstrate that the proposed processing technique approaches the centralized solution and can outperform Oracle best node-wise clustering in terms of objective source separation metrics. |
| Author | Nakatani, T. Souden, M. Kinoshita, K. Delcroix, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Souden fullname: Souden, M. email: mehrez.souden@lab.ntt.co.jp organization: NTT Commun. Sci. Labs., Kyoto, Japan – sequence: 2 givenname: K. surname: Kinoshita fullname: Kinoshita, K. email: kinoshita.k@lab.ntt.co.jp organization: NTT Commun. Sci. Labs., Kyoto, Japan – sequence: 3 givenname: M. surname: Delcroix fullname: Delcroix, M. email: marc.delcroix@lab.ntt.co.jp organization: NTT Commun. Sci. Labs., Kyoto, Japan – sequence: 4 givenname: T. surname: Nakatani fullname: Nakatani, T. email: nakatani.tomohiro@lab.ntt.co.jp organization: NTT Commun. Sci. Labs., Kyoto, Japan |
| BookMark | eNo1UNtKw0AUXLGCbc0HiC_7A6l7S3b3UeoVIgrqkw_lZHPWrLRJ2E2R_r0B67wMZxhmOLMgs67vkJBLzlacM3v9XL29rgTjYlVKZbURJySbiKtSS85EyU7J4v9QekbmvCh4LgrFz0mW0jebYLhVJZ-Tz9uQxhjq_YgN3QUX-6Gd2ijECAc6xN5hSqH7or6PNA2IrqWp30eHNOEAEcbQd_QnjC11W5isPmCkfp8m-YKcedgmzI68JB_3d-_rx7x6eXha31R54LoYc1dqZMq6BsAbKwyAFGBqVZceC9MYZ4W2aKRxWhld16gKYNKb6QkjVQ1ySa7-cgMiboYYdhAPm-M28hcXKlmh |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MLSP.2012.6349782 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781467310260 1467310263 9781467310253 1467310255 |
| EndPage | 6 |
| ExternalDocumentID | 6349782 |
| Genre | orig-research |
| GroupedDBID | 29M 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i175t-c67e049cdaaf8928aa32a8b4b6fe58d8c9279e838c7487bbe45a03f8008834ba3 |
| IEDL.DBID | RIE |
| ISBN | 1467310247 9781467310246 |
| ISSN | 1551-2541 |
| IngestDate | Wed Aug 27 03:20:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-c67e049cdaaf8928aa32a8b4b6fe58d8c9279e838c7487bbe45a03f8008834ba3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6349782 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Sept. |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 IEEE International Workshop on Machine Learning for Signal Processing |
| PublicationTitleAbbrev | MLSP |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000819461 ssj0042311 |
| Score | 1.9106265 |
| Snippet | We propose a new approach for clustering and separating competing speech signals using a distributed microphone array (DMA). This approach can be viewed as an... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Arrays blind source separation classifier combination Distributed microphone array processing Estimation Microphones Signal to noise ratio Speech speech clustering Speech processing Vectors |
| Title | Distributed microphone array processing for speech source separation with classifier fusion |
| URI | https://ieeexplore.ieee.org/document/6349782 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMH6nB48O2Nqt7VklxIghURISD6TtXiMxIoHtoH-9r-vAaDx423bourZ77_e-fo-QSzy4fWVzNFOFkRFHQBBJqU3kXOzAeAKoyg85esiGE343TacNcrWthQGAKvkMuv6yiuXn77b0rrJexnw_NBS4O0JmoVZr60_xqq2iRgtSGFFCHLhS0zhCIyiuiroygWgm4WLD9VTfZ3W4M-6r3uj-cewzvpJu_bYfbVcqrTNokdFmviHZ5LVbFqZrP39ROf73g_ZI57u-j463mmufNGBxQFqbBg-0_t_b5PnG0-r6jliQ0zefuucz2YHq1Up_0GWoMcARKCJful4C2BcaogF0DYFU_H1BvauXWo_S5w6VMHWl99B1yGRw-3Q9jOpuDNEcIUYR2UwAmhM219pJlUitWaKl4SZzkMpcWpUIBZJJK9AIMgZ4qvvMISCVknGj2SFpLnCOR4TaGAfTqWKaS64YqBwNFxQFAkAb3Npj0vZrNVsGwo1ZvUwnfz8-Jbt-v0Li1xlpFqsSzhEpFOaiOiJfY6G34g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSECsZve_DoBtu6rT2rBJUREiEh8UDa7i0SIxDYDvrX-7oOjMaDt22Hrmu7937v6_cIucaD2xE6RTM1VtxhCAgczqVysszLQBkCqNIPmQyi3pg9TsJJjdxsa2EAoEw-A9dclrH8dKEL4yprR4Hph4YCdydkjIW2WmvrUTHKrSRHs3IYcYJn2VJDz0EzyCvLuqIY8YzP4g3bU3UfVQFPryPaSf95aHK-fLd634_GK6Xe6TZIspmxTTd5c4tcufrzF5njfz9pn7S-K_zocKu7DkgN5oeksWnxQKs_vkle7gyxrumJBSl9N8l7JpcdqFyt5Add2ioDHIEi9qXrJYB-pTYeQNdgacUXc2qcvVQbnD7LUA3TrDA-uhYZd-9Htz2n6sfgzBBk5I6OYkCDQqdSZlz4XMrAl1wxFWUQ8pRr4ccCeMB1jGaQUsBC2QkyhKScB0zJ4IjU5zjHY0K1h4PJUASScSYCECmaLigMYgCpYh6dkKZZq-nSUm5Mq2U6_fvxFdntjZL-tP8weDoje2bvbBrYOannqwIuEDfk6rI8Ll83V7sv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=Distributed+microphone+array+processing+for+speech+source+separation+with+classifier+fusion&rft.au=Souden%2C+M.&rft.au=Kinoshita%2C+K.&rft.au=Delcroix%2C+M.&rft.au=Nakatani%2C+T.&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467310246&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2012.6349782&rft.externalDocID=6349782 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon |