GLRT for testing separability of a complex-valued mixture based on the Strong Uncorrelating Transform

The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct circularity coefficients. In practice, the circularity coefficients need to be estimated from observed data. We propose a generalized likelihood ratio...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Workshop on Machine Learning for Signal Processing pp. 1 - 6
Main Authors Ramirez, D., Schreier, P. J., Via, J., Santamaria, I.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN1467310247
9781467310246
ISSN1551-2541
DOI10.1109/MLSP.2012.6349785

Cover

Abstract The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct circularity coefficients. In practice, the circularity coefficients need to be estimated from observed data. We propose a generalized likelihood ratio test (GLRT) for separability of a complex mixture using the SUT, based on estimated circularity coefficients. For distinct circularity coefficients (separable case), the maximum likelihood (ML) estimates, required for the GLRT, are straightforward. However, for circularity coefficients with multiplicity larger than one (non-separable case), the ML estimates are much more difficult to find. Numerical simulations show the good performance of the proposed detector.
AbstractList The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct circularity coefficients. In practice, the circularity coefficients need to be estimated from observed data. We propose a generalized likelihood ratio test (GLRT) for separability of a complex mixture using the SUT, based on estimated circularity coefficients. For distinct circularity coefficients (separable case), the maximum likelihood (ML) estimates, required for the GLRT, are straightforward. However, for circularity coefficients with multiplicity larger than one (non-separable case), the ML estimates are much more difficult to find. Numerical simulations show the good performance of the proposed detector.
Author Santamaria, I.
Ramirez, D.
Via, J.
Schreier, P. J.
Author_xml – sequence: 1
  givenname: D.
  surname: Ramirez
  fullname: Ramirez, D.
  email: david.ramirez@sst.upb.de
  organization: Signal & Syst. Theor. Group, Univ. Paderborn, Paderborn, Germany
– sequence: 2
  givenname: P. J.
  surname: Schreier
  fullname: Schreier, P. J.
  email: peter.schreier@sst.upb.de
  organization: Signal & Syst. Theor. Group, Univ. Paderborn, Paderborn, Germany
– sequence: 3
  givenname: J.
  surname: Via
  fullname: Via, J.
  email: jvia@gtas.dicom.unican.es
  organization: Commun. Eng. Dept., Univ. of Cantabria, Santander, Spain
– sequence: 4
  givenname: I.
  surname: Santamaria
  fullname: Santamaria, I.
  email: nacho@gtas.dicom.unican.es
  organization: Commun. Eng. Dept., Univ. of Cantabria, Santander, Spain
BookMark eNo1kN9OwjAchWvEREAewHjTFxj239rt0hBFkxmNwDVpu9-0ZltJWwy8PYviuflyLs53cSZo1PseELqlZE4pKe9fq9X7nBHK5pKLUhX5BZoNoEIqTgmT5BJN_otQIzSmeU4zlgt6jWYxfpMhBS2FpGMEy-pjjRsfcIKYXP-JI-x00Ma1Lh2xb7DG1ne7Fg7Zj273UOPOHdI-ADY6Ds33OH0BXqXgh_Gmtz4EaPWvah10Hwd3d4OuGt1GmJ05RZunx_XiOaveli-LhypzVOUps7nUTV2LAqg2vGiYYoUBVVPLSgBDipIrpRUoaQXn1jJVArGiIURIw7jhU3T353UAsN0F1-lw3J5f4icyUlxB
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP.2012.6349785
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467310260
1467310263
9781467310253
1467310255
EndPage 6
ExternalDocumentID 6349785
Genre orig-research
GroupedDBID 29M
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-c56afdd48e1ab38f2728be7d1c29eeb089377a7e76c433cc279e0c4f0046b23b3
IEDL.DBID RIE
ISBN 1467310247
9781467310246
ISSN 1551-2541
IngestDate Wed Aug 27 03:20:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c56afdd48e1ab38f2728be7d1c29eeb089377a7e76c433cc279e0c4f0046b23b3
PageCount 6
ParticipantIDs ieee_primary_6349785
PublicationCentury 2000
PublicationDate 2012-Sept.
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-Sept.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Workshop on Machine Learning for Signal Processing
PublicationTitleAbbrev MLSP
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000819461
ssj0042311
Score 1.892739
Snippet The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms circularity coefficients
Coherence
Complex independent component analysis (ICA)
Covariance matrix
Electronic mail
generalized likelihood ratio test (GLRT)
hypothesis test
maximum likelihood (ML) estimation
Maximum likelihood detection
Maximum likelihood estimation
Testing
Transforms
Title GLRT for testing separability of a complex-valued mixture based on the Strong Uncorrelating Transform
URI https://ieeexplore.ieee.org/document/6349785
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgExMfBfEtD4yk1N_ujCgIUYSglbpVtnNBCJEiSKXCr8fnpEUgBrY4SxIn8T3fvfeOkBPjCsOClJmLYCGTCrsBSpZnTnGvjPeFSrq1wa2-GsnrsRqvkNOlFgYAEvkMOniYavn5NMwwVXamBfZDU6tk1Vhda7WW-RQMbckarV6FI0pgtVeqYlncBLEk6tImohkuzcLrqRnrptzJur2zwc3DHTK-eKe52o-2Kynq9NfJYHG_NdnkuTOrfCd8_rJy_O8DbZDtb30fvVtGrk2yAuUWWV80eKDN_94mcHlzP6QR1tIKzTjKR_oO6BWeCLUfdFpQRxMnHeYZuoZDTl-e5liToBgdczotaQSY9AHz7Y90hJ6ZtXgmjoYLyLxNRv2L4flV1vRlyJ4i2KiyoLQr8lxaYM4LW3DDrQeTs8B7AL6LEMg4A0YHKUQI3PSgG2SBe3HPhRc7pFVOS9gl1JrAjACVC-6lLoQP1jqXVhrLvdV7pI2zNnmtrTcmzYTt_336gKzhm6spYIekVb3N4Chihsofp4_lCyq8umo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUKDDDx0SK-8cBISv0VpzOiFGgRoq3UrbKdC0KIFEEqAb8en5MWgRjY4ixJnMT3fPfeO0JOtMk0c1JGxoOFSCrsBihZGhnFrdLWZiro1vq3cXckr8dqXCOnCy0MAATyGTTxMNTy06mbYarsLBbYD00tkRUlpVSlWmuRUcHgFszRynXY4wRWuqUqFvltEAuyrlh7PMOlnrs9VeO4KniyVvus3xvcIeeLN6vr_Wi8EuJOZ53053dc0k2emrPCNt3nLzPH_z7SBml8K_zo3SJ2bZIa5Ftkfd7igVZ_fJ3AZe9-SD2wpQXaceQP9A3QLTxQaj_oNKOGBlY6vEfoGw4pfX58x6oExfiY0mlOPcSkA8y4P9ARumaW8hk_Gs5Bc4OMOhfD825UdWaIHj3cKCKnYpOlqUyAGSuSjGueWNApc7wNYFsIgrTRoGMnhXCO6za0nMxwN265sGKbLOfTHHYITbRjWoBKBbcyzoR1SWJMWGsSbpN4l9Rx1iYvpfnGpJqwvb9PH5PV7rDfm_Subm_2yRq-xZIQdkCWi9cZHHoEUdij8OF8ASCevbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=GLRT+for+testing+separability+of+a+complex-valued+mixture+based+on+the+Strong+Uncorrelating+Transform&rft.au=Ramirez%2C+D.&rft.au=Schreier%2C+P.+J.&rft.au=Via%2C+J.&rft.au=Santamaria%2C+I.&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467310246&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2012.6349785&rft.externalDocID=6349785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon