Parallelization of artificial neural network training algorithms: A financial forecasting application

Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) pp. 1 - 6
Main Author Casas, C. A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2012
Subjects
Online AccessGet full text
ISBN1467318027
9781467318020
ISSN2380-8454
DOI10.1109/CIFEr.2012.6327811

Cover

Abstract Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used to train a network that forecasts the S&P500 Index. Training this ANN involves the processing of vast amounts of historical financial data which is time consuming. Financial markets; however, constitute fast paced environments where decisions need to make shortly after new information becomes available. Parallelizing the backpropagation algorithm to run on four processors simultaneously resulted in a reduction of 61% in training time compared to the same algorithm running without parallelization.
AbstractList Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used to train a network that forecasts the S&P500 Index. Training this ANN involves the processing of vast amounts of historical financial data which is time consuming. Financial markets; however, constitute fast paced environments where decisions need to make shortly after new information becomes available. Parallelizing the backpropagation algorithm to run on four processors simultaneously resulted in a reduction of 61% in training time compared to the same algorithm running without parallelization.
Author Casas, C. A.
Author_xml – sequence: 1
  givenname: C. A.
  surname: Casas
  fullname: Casas, C. A.
  email: acasas@stac.edu
  organization: St Thomas Aquinas Coll., Sparkill, NY, USA
BookMark eNpFkM1Kw0AURkesYFv7ArrJC6TOnZ_MxF0prRYKutB1uUnu1NF0UiYjok9fiAVXhw8OZ_FN2Ch0gRi7BT4H4OX9crNexbngIOaFFMYCXLAJqMJIsFzqy_8hzIiNhbQ8t0qrazbr-w_OuQRjrC7GjF4wYttS638x-S5kncswJu987bHNAn3FAem7i59ZiuiDD_sM230XfXo_9A_ZInM-YBh810WqsU-Dczy2vh6qN-zKYdvT7Mwpe1uvXpdP-fb5cbNcbHMPRqe8Bi2kQ0PCCtuQokqWuqxqMJUqsYRCN9gUZa0rEEDEhS1Mo7VCV2KlyMgpu_vreiLaHaM_YPzZnS-SJ4iVXMI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIFEr.2012.6327811
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1467318035
9781467318013
9781467318037
1467318019
EndPage 6
ExternalDocumentID 6327811
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c1523fa7e2828de4eb3959bc17b49a9165dad69c5b121ee02867d554af9ab4e73
IEDL.DBID RIE
ISBN 1467318027
9781467318020
ISSN 2380-8454
IngestDate Wed Aug 27 05:06:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c1523fa7e2828de4eb3959bc17b49a9165dad69c5b121ee02867d554af9ab4e73
PageCount 6
ParticipantIDs ieee_primary_6327811
PublicationCentury 2000
PublicationDate 2012-March
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationTitle 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)
PublicationTitleAbbrev CIFEr
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177856
ssj0000817949
Score 1.5003823
Snippet Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Biological system modeling
Hardware
Neurons
Program processors
Training
Title Parallelization of artificial neural network training algorithms: A financial forecasting application
URI https://ieeexplore.ieee.org/document/6327811
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGLXaTkwFWsQtD4wkzeGTDVWtClJRByp1q3wFKkqD2nTh12M7BwIxMCWOIiV2vuh9tr_3HgA3zDiQUzxIsKQBIogEnLEsiDJGnWAR1pEjCk-fyGSOHhd40QK3DRfGGOOLz0zoTv1evs7V3i2VDUiaOGJkG7QpIyVXq1lPsdBmQ4s3bYuLlOHSW45FAUMYeV4XoakTPaO13FPVjmpCTcQHw4fxyEmFxklYPfGH9YpHnnEXTOt3LgtO3sJ9IUP1-UvO8b-dOgT9b44fnDXodQRaZnMMurXJA6z--R4wM7F1fivrirAJ8wy6cCuVJ6DTw_QHX00Oa8cJKNYv-XZVvL7v7uA9zGpdD2hzZKPErvD3fG-e98F8PHoeToLKmyFY2YSjCJTF_TQT1LgpmzbIzsk55lLFVCIubM6JtdCEKyzjJDbGZjGEapu6iIwLiQxNT0Bnk2_MKYBCM0lIYljmjE8SLSR2tTlppJUgitIz0HOjtvwo5TeW1YCd_335Ahy4L1eWiV2CTrHdmyubNxTy2gfMF6YCvAc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLnSFCsa3s3BpobTzdGcIBBQIC0jYkXlViUgNlI1f70xfRuPCVTtNk3amtzl3Zu45B4A7ZhzIKe4FWFIPEUQ8zljk-RGjTrAIa98RhUdj0p-hpzmeV8B9yYUxxqTFZ6bpTtO9fB2rnVsqa5EwcMTIPbCPEUI4Y2uVKyoW3Gxw8bJtkZEynLnLMd9jCKOU2UVo6GTPaCH4lLf9glLj81Zn0Os6sdB20Myf-cN8JcWeXg2MirfOSk7emrtENtXnL0HH_3brCDS-WX5wUuLXMaiY9QmoFTYPMP_r68BMxMY5rqxyyiaMI-gCLtOegE4RMz2k9eSw8JyAYvUSb5bJ6_v2AT7CqFD2gDZLNkpsk_Se7-3zBpj1utNO38vdGbylTTkST1nkDyNBjZu0aYPsrJxjLlWbSsSFzTqxFppwhWU7aBtj8xhCtU1eRMSFRIaGp6C6jtfmDEChmSQkMCxy1ieBFhK76pzQ10oQRek5qLtRW3xkAhyLfMAu_r58Cw7609FwMRyMny_BofuKWdHYFagmm525tllEIm_S4PkCsCS_VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computational+Intelligence+for+Financial+Engineering+%26+Economics+%28CIFEr%29&rft.atitle=Parallelization+of+artificial+neural+network+training+algorithms%3A+A+financial+forecasting+application&rft.au=Casas%2C+C.+A.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467318020&rft.issn=2380-8454&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCIFEr.2012.6327811&rft.externalDocID=6327811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8454&client=summon