Parallelization of artificial neural network training algorithms: A financial forecasting application
Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used...
Saved in:
| Published in | 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) pp. 1 - 6 |
|---|---|
| Main Author | |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.03.2012
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1467318027 9781467318020 |
| ISSN | 2380-8454 |
| DOI | 10.1109/CIFEr.2012.6327811 |
Cover
| Abstract | Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used to train a network that forecasts the S&P500 Index. Training this ANN involves the processing of vast amounts of historical financial data which is time consuming. Financial markets; however, constitute fast paced environments where decisions need to make shortly after new information becomes available. Parallelizing the backpropagation algorithm to run on four processors simultaneously resulted in a reduction of 61% in training time compared to the same algorithm running without parallelization. |
|---|---|
| AbstractList | Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most common artificial neural training algorithm. This paper discusses results obtained with the parallelization of the backpropagation algorithm used to train a network that forecasts the S&P500 Index. Training this ANN involves the processing of vast amounts of historical financial data which is time consuming. Financial markets; however, constitute fast paced environments where decisions need to make shortly after new information becomes available. Parallelizing the backpropagation algorithm to run on four processors simultaneously resulted in a reduction of 61% in training time compared to the same algorithm running without parallelization. |
| Author | Casas, C. A. |
| Author_xml | – sequence: 1 givenname: C. A. surname: Casas fullname: Casas, C. A. email: acasas@stac.edu organization: St Thomas Aquinas Coll., Sparkill, NY, USA |
| BookMark | eNpFkM1Kw0AURkesYFv7ArrJC6TOnZ_MxF0prRYKutB1uUnu1NF0UiYjok9fiAVXhw8OZ_FN2Ch0gRi7BT4H4OX9crNexbngIOaFFMYCXLAJqMJIsFzqy_8hzIiNhbQ8t0qrazbr-w_OuQRjrC7GjF4wYttS638x-S5kncswJu987bHNAn3FAem7i59ZiuiDD_sM230XfXo_9A_ZInM-YBh810WqsU-Dczy2vh6qN-zKYdvT7Mwpe1uvXpdP-fb5cbNcbHMPRqe8Bi2kQ0PCCtuQokqWuqxqMJUqsYRCN9gUZa0rEEDEhS1Mo7VCV2KlyMgpu_vreiLaHaM_YPzZnS-SJ4iVXMI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CIFEr.2012.6327811 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1467318035 9781467318013 9781467318037 1467318019 |
| EndPage | 6 |
| ExternalDocumentID | 6327811 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-c1523fa7e2828de4eb3959bc17b49a9165dad69c5b121ee02867d554af9ab4e73 |
| IEDL.DBID | RIE |
| ISBN | 1467318027 9781467318020 |
| ISSN | 2380-8454 |
| IngestDate | Wed Aug 27 05:06:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-c1523fa7e2828de4eb3959bc17b49a9165dad69c5b121ee02867d554af9ab4e73 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6327811 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-March |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) |
| PublicationTitleAbbrev | CIFEr |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177856 ssj0000817949 |
| Score | 1.5003823 |
| Snippet | Artificial neural networks (ANN) are widely used to solve series prediction problems such as prices of financial instruments. Backpropagation is the most... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Biological system modeling Hardware Neurons Program processors Training |
| Title | Parallelization of artificial neural network training algorithms: A financial forecasting application |
| URI | https://ieeexplore.ieee.org/document/6327811 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGLXaTkwFWsQtD4wkzeGTDVWtClJRByp1q3wFKkqD2nTh12M7BwIxMCWOIiV2vuh9tr_3HgA3zDiQUzxIsKQBIogEnLEsiDJGnWAR1pEjCk-fyGSOHhd40QK3DRfGGOOLz0zoTv1evs7V3i2VDUiaOGJkG7QpIyVXq1lPsdBmQ4s3bYuLlOHSW45FAUMYeV4XoakTPaO13FPVjmpCTcQHw4fxyEmFxklYPfGH9YpHnnEXTOt3LgtO3sJ9IUP1-UvO8b-dOgT9b44fnDXodQRaZnMMurXJA6z--R4wM7F1fivrirAJ8wy6cCuVJ6DTw_QHX00Oa8cJKNYv-XZVvL7v7uA9zGpdD2hzZKPErvD3fG-e98F8PHoeToLKmyFY2YSjCJTF_TQT1LgpmzbIzsk55lLFVCIubM6JtdCEKyzjJDbGZjGEapu6iIwLiQxNT0Bnk2_MKYBCM0lIYljmjE8SLSR2tTlppJUgitIz0HOjtvwo5TeW1YCd_335Ahy4L1eWiV2CTrHdmyubNxTy2gfMF6YCvAc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLnSFCsa3s3BpobTzdGcIBBQIC0jYkXlViUgNlI1f70xfRuPCVTtNk3amtzl3Zu45B4A7ZhzIKe4FWFIPEUQ8zljk-RGjTrAIa98RhUdj0p-hpzmeV8B9yYUxxqTFZ6bpTtO9fB2rnVsqa5EwcMTIPbCPEUI4Y2uVKyoW3Gxw8bJtkZEynLnLMd9jCKOU2UVo6GTPaCH4lLf9glLj81Zn0Os6sdB20Myf-cN8JcWeXg2MirfOSk7emrtENtXnL0HH_3brCDS-WX5wUuLXMaiY9QmoFTYPMP_r68BMxMY5rqxyyiaMI-gCLtOegE4RMz2k9eSw8JyAYvUSb5bJ6_v2AT7CqFD2gDZLNkpsk_Se7-3zBpj1utNO38vdGbylTTkST1nkDyNBjZu0aYPsrJxjLlWbSsSFzTqxFppwhWU7aBtj8xhCtU1eRMSFRIaGp6C6jtfmDEChmSQkMCxy1ieBFhK76pzQ10oQRek5qLtRW3xkAhyLfMAu_r58Cw7609FwMRyMny_BofuKWdHYFagmm525tllEIm_S4PkCsCS_VA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computational+Intelligence+for+Financial+Engineering+%26+Economics+%28CIFEr%29&rft.atitle=Parallelization+of+artificial+neural+network+training+algorithms%3A+A+financial+forecasting+application&rft.au=Casas%2C+C.+A.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467318020&rft.issn=2380-8454&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCIFEr.2012.6327811&rft.externalDocID=6327811 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8454&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8454&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8454&client=summon |