Clubs-based Particle Swarm Optimization

This paper introduces a new dynamic neighborhood network for particle swarm optimization. In the proposed clubs-based particle swarm optimization (C-PSO) algorithm, each particle initially joins a default number of what we call 'clubs'. Each particle is affected by its own experience and t...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Swarm Intelligence Symposium : Honolulu, HI, 1-5 April 2007 pp. 289 - 296
Main Authors Elshamy, W., Emara, H.M., Bahgat, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2007
Subjects
Online AccessGet full text
ISBN9781424407088
1424407087
DOI10.1109/SIS.2007.367950

Cover

Abstract This paper introduces a new dynamic neighborhood network for particle swarm optimization. In the proposed clubs-based particle swarm optimization (C-PSO) algorithm, each particle initially joins a default number of what we call 'clubs'. Each particle is affected by its own experience and the experience of the best performing member of the clubs it is a member of. Clubs membership is dynamic, where the worst performing particles socialize more by joining more clubs to learn from other particles and the best performing particles are made to socialize less by leaving clubs to reduce their strong influence on other members. Particles return gradually to default membership level when they stop showing extreme performance. Inertia weights of swarm members are made random within a predefined range. This proposed dynamic neighborhood algorithm is compared with other two algorithms having static neighborhood topologies on a set of classic benchmark problems. The results showed superior performance for C-PSO regarding escaping local optima and convergence speed
AbstractList This paper introduces a new dynamic neighborhood network for particle swarm optimization. In the proposed clubs-based particle swarm optimization (C-PSO) algorithm, each particle initially joins a default number of what we call 'clubs'. Each particle is affected by its own experience and the experience of the best performing member of the clubs it is a member of. Clubs membership is dynamic, where the worst performing particles socialize more by joining more clubs to learn from other particles and the best performing particles are made to socialize less by leaving clubs to reduce their strong influence on other members. Particles return gradually to default membership level when they stop showing extreme performance. Inertia weights of swarm members are made random within a predefined range. This proposed dynamic neighborhood algorithm is compared with other two algorithms having static neighborhood topologies on a set of classic benchmark problems. The results showed superior performance for C-PSO regarding escaping local optima and convergence speed
Author Emara, H.M.
Bahgat, A.
Elshamy, W.
Author_xml – sequence: 1
  givenname: W.
  surname: Elshamy
  fullname: Elshamy, W.
  organization: Dept. of Electr. Power & Machines, Cairo Univ
– sequence: 2
  givenname: H.M.
  surname: Emara
  fullname: Emara, H.M.
  organization: Dept. of Electr. Power & Machines, Cairo Univ
– sequence: 3
  givenname: A.
  surname: Bahgat
  fullname: Bahgat, A.
  organization: Dept. of Electr. Power & Machines, Cairo Univ
BookMark eNotjkFLwzAYhgM6ULeePXjpzVNr0nzJlxyl6BwMJlTPI0m_QKTtRlsR_fUW9L088Bwe3ht2OZwGYuxW8FIIbh-aXVNWnGMpNVrFL1hm0QioADhyY65YNk0ffJm0WqK6Zvd19-mnwruJ2vzVjXMKHeXNlxv7_HCeU59-3JxOw4atousmyv65Zu_PT2_1S7E_bHf1475IAtVc-FYZ1BgUCIwyUoDoPS6PoHXKRgBtvZAE1gRNOphWGnJhcToa73WQa3b3101EdDyPqXfj9xGqSgqD8hfoT0Dn
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIS.2007.367950
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 296
ExternalDocumentID 4223187
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-bd58767c5417f3fec4fbb72004da59f4469b13e498c6e6c8d38eac9b16f8bb6c3
IEDL.DBID RIE
ISBN 9781424407088
1424407087
IngestDate Wed Aug 27 01:50:23 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bd58767c5417f3fec4fbb72004da59f4469b13e498c6e6c8d38eac9b16f8bb6c3
PageCount 8
ParticipantIDs ieee_primary_4223187
PublicationCentury 2000
PublicationDate 2007-April
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-April
PublicationDecade 2000
PublicationTitle 2007 IEEE Swarm Intelligence Symposium : Honolulu, HI, 1-5 April 2007
PublicationTitleAbbrev SIS
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000396375
Score 1.4905359
Snippet This paper introduces a new dynamic neighborhood network for particle swarm optimization. In the proposed clubs-based particle swarm optimization (C-PSO)...
SourceID ieee
SourceType Publisher
StartPage 289
SubjectTerms Biology computing
Birds
Dynamic range
Force control
Heuristic algorithms
Particle swarm optimization
Power engineering and energy
Random variables
Social network services
Topology
Title Clubs-based Particle Swarm Optimization
URI https://ieeexplore.ieee.org/document/4223187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjxVbcU3exC8mLbbzOZxLpYqqIVa6K1sXiDaVsougr_eZB9VxIO3TQ5LspnMl8zO9w3AFUPLjGWOSKmHxN-_FJGYGEIVyqGR6JwtEmQf2WSO94tk0YCbHRfGWlskn9leeCz-5ZuNzkOorI8ey2LBm9DkgpVcrV08ZUC9KfGk5m55Sxa8lnSq2qKS9okHsj-7m5X6hZRxGUj3P2qrFNAybsNDPagyo-S1l2eqpz9_6TX-d9T70P0m8UXTHTwdQMOuD6FdV3GIqk3dgevRm3ceJMCZiaaVJUWzj3S7ip68Q1lVTM0uzMe3z6MJqconkBd_JsiIMol3dVwnGHNHndXolOJhV5g0kQ7DwsTUohSaWaaFocJ7Yd_HnFCKaXoErfVmbY8hQuMGhmNqkBr070y10f5j08Qff1CY4Ql0wryX76VCxrKa8unf3WewV0ZIQ_7LObSybW4vPLRn6rJY0y-7SZ7s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbPZh4sQh0-joTCSggCZBwI9tXYhQwZImJv952H2iMB2_bHjbtdjpfOzvfNwjdMLDMWOawlLqF_f1LYQnUYKJAtowE52yaIDtk3Sk8zuishO62XBhrbZp8ZuvhMf2Xb1Z6E0Jl9-CxrCn4DtqlAEAzttY2otIg3pg4Ldhb3pYFL0Sd8rbIxX2aDXk_7o0zBUPCuAy0-x_VVVJw6VTQoBhWllPyWt8kqq4_fyk2_nfcB6j2TeOLRluAOkQluzxClaKOQ5Rv6yq6bb9594EDoJlolNtSNP6I14vo2buURc7VrKFp52HS7uK8gAJ-8aeCBCtDvbPjmkKTO-KsBqcUD_vCxFQ6CEvTJBak0MwyLQwR3g_7PuaEUkyTY1Rerpb2BEVgXMNwiA0QA_6dsTbaf2xC_QEIhGmdomqY9_w908iY51M--7v7Gu11J4P-vN8bPp2j_SxeGrJhLlA5WW_spQf6RF2l6_sFRcmiOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Swarm+Intelligence+Symposium+%3A+Honolulu%2C+HI%2C+1-5+April+2007&rft.atitle=Clubs-based+Particle+Swarm+Optimization&rft.au=Elshamy%2C+W.&rft.au=Emara%2C+H.M.&rft.au=Bahgat%2C+A.&rft.date=2007-04-01&rft.pub=IEEE&rft.isbn=9781424407088&rft.spage=289&rft.epage=296&rft_id=info:doi/10.1109%2FSIS.2007.367950&rft.externalDocID=4223187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424407088/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424407088/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424407088/sc.gif&client=summon&freeimage=true