Quantitative Trait Locus Analysis Using a Partitioned Linear Model on a GPU Cluster

Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging a...

Full description

Saved in:
Bibliographic Details
Published in2012 26th IEEE International Parallel and Distributed Processing Symposium Workshops pp. 752 - 760
Main Authors Bailey, P. E., Patki, T., Striemer, G. M., Akoglu, A., Lowenthal, D. K., Bradbury, P., Vaughn, M., Wang, L., Goff, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2012
Subjects
Online AccessGet full text
ISBN1467309745
9781467309745
DOI10.1109/IPDPSW.2012.93

Cover

Abstract Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging and slow. One approach, which is the subject of this paper, is Partitioned Linear Modeling (PLM), lends itself well to parallelization, both by MPI between nodes and by GPU within nodes. Large input datasets make this parallelization on the GPU non-trivial. This paper compares several candidate integrated MPI/GPU parallel implementations of PLM on a cluster of GPUs for varied data sets. We compare them to a naive implementation and show that while that implementation is quite efficient on small data sets, when the data set is large, data-transfer overhead dominates an all-GPU implementation of PLM. We show that an MPI implementation that selectively uses the GPU for a relative minority of the code performs best and results in a 64 improvement over the MPI/CPU version. As a first implementation of PLM on GPUs, our work serves as a reminder that different GPU implementations are needed, depending on the size of the working set, and that data intensive applications are not necessarily trivially parallelizable with GPUs.
AbstractList Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging and slow. One approach, which is the subject of this paper, is Partitioned Linear Modeling (PLM), lends itself well to parallelization, both by MPI between nodes and by GPU within nodes. Large input datasets make this parallelization on the GPU non-trivial. This paper compares several candidate integrated MPI/GPU parallel implementations of PLM on a cluster of GPUs for varied data sets. We compare them to a naive implementation and show that while that implementation is quite efficient on small data sets, when the data set is large, data-transfer overhead dominates an all-GPU implementation of PLM. We show that an MPI implementation that selectively uses the GPU for a relative minority of the code performs best and results in a 64 improvement over the MPI/CPU version. As a first implementation of PLM on GPUs, our work serves as a reminder that different GPU implementations are needed, depending on the size of the working set, and that data intensive applications are not necessarily trivially parallelizable with GPUs.
Author Striemer, G. M.
Goff, S.
Patki, T.
Vaughn, M.
Bailey, P. E.
Akoglu, A.
Bradbury, P.
Lowenthal, D. K.
Wang, L.
Author_xml – sequence: 1
  givenname: P. E.
  surname: Bailey
  fullname: Bailey, P. E.
– sequence: 2
  givenname: T.
  surname: Patki
  fullname: Patki, T.
– sequence: 3
  givenname: G. M.
  surname: Striemer
  fullname: Striemer, G. M.
– sequence: 4
  givenname: A.
  surname: Akoglu
  fullname: Akoglu, A.
– sequence: 5
  givenname: D. K.
  surname: Lowenthal
  fullname: Lowenthal, D. K.
– sequence: 6
  givenname: P.
  surname: Bradbury
  fullname: Bradbury, P.
– sequence: 7
  givenname: M.
  surname: Vaughn
  fullname: Vaughn, M.
– sequence: 8
  givenname: L.
  surname: Wang
  fullname: Wang, L.
– sequence: 9
  givenname: S.
  surname: Goff
  fullname: Goff, S.
BookMark eNotjU1Lw0AYhBdU0NZevXjZP5C4X9nNHkvUWogYaYPH8nbzRlbiRrKJ0H_fgM5lGJ5hZkEuQx-QkDvOUs6ZfdhWj9XuIxWMi9TKC7LgShvJrFHZNVnF-MVmmZwLwW7I7n2CMPoRRv-LdD-AH2nZuynSdYDuFH2kdfThkwKtYJiLfj5raOkDwkBf-wY72oeZbqqaFt0URxxuyVULXcTVvy9J_fy0L16S8m2zLdZl4rnJxuToXJO14JhhrtHKMmcz3WpgRyXmbBCh0YjWgkJrjBKuYVrledYaI52Ucknu_3Y9Ih5-Bv8Nw-mghWGGZ_IMnXdPhA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW.2012.93
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 760
ExternalDocumentID 6270715
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-bccd5fac070cd6490c956f6a0b42d647eead6ee99a4e97742cd064885f773c333
IEDL.DBID RIE
ISBN 1467309745
9781467309745
IngestDate Wed Aug 27 04:57:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bccd5fac070cd6490c956f6a0b42d647eead6ee99a4e97742cd064885f773c333
PageCount 9
ParticipantIDs ieee_primary_6270715
PublicationCentury 2000
PublicationDate 2012-May
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-May
PublicationDecade 2010
PublicationTitle 2012 26th IEEE International Parallel and Distributed Processing Symposium Workshops
PublicationTitleAbbrev ipdpsw
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781220
Score 1.4846475
Snippet Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant...
SourceID ieee
SourceType Publisher
StartPage 752
SubjectTerms Genetics
Graphics processing unit
Instruction sets
Kernel
Memory management
Random access memory
Registers
Title Quantitative Trait Locus Analysis Using a Partitioned Linear Model on a GPU Cluster
URI https://ieeexplore.ieee.org/document/6270715
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNE0cx54LpSBAQaWiW-WvShVViiBZ-PXcOU1BiIEtdqTEsc95Z_vdO0IuvEYZEyZQqZYBY1IFimU20MxFUGMxXRKyLR75eMruZumsRS63sTDOOU8-cyFe-rN8uzYVbpX1eZwBIqZt0s4Er2O1tvspKFoTx5GP3eJgtuAnp42kU1PeiDYOItm_za_yyQtSu-IQD51_pFbxyDLaJQ9Nm2pCyWtYlTo0n7_kGv_b6D3S-47ho_kWnfZJyxVdMnmqVOHDyuAnRwGnliW9h0d80EachHoOAVU0R5vyOkaWwoIVJgTFvGkrui7g7k0-pcNVhSoLPTIdXT8Px8EmrUKwBF-hDLQxNl0oA5PdWM5kZGCNtOAq0iyGcubAuLhzUirm0DuMjQW_RYh0kWWJSZLkgHQKePshoUILa5LBgKMQGuqjW8x2ZSIJ3yYEE0ekix0yf6uVM-abvjj-u_qE7OB41HTCU9Ip3yt3BpBf6nM_1l-6fqdC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjbG1W3dGERTIDBC5ka4tCZEMo9vFv973OobGePC2dsnWta97r-33fY-QG6tRxoRyJE9jh7FYOpJF2kmZ8aBGY7okRFuMwt6UPc74rEZut1wYY4wFnxkXL-1Zvl6rArfKWqEfgUfkO2SXM8Z4ydba7qigbI3ve5a9FYLhQqTMK1GnqryRbWx7cauf3CXjFwR3-S4eO_9IrmJ9S_eADKtWlZCSV7fIU1d9_hJs_G-zD0nzm8VHk61_OiI1kzXI-LmQmSWWwW-Ogqda5nQAj_iglTwJtSgCKmmCVmWVjDSFJStMCYqZ01Z0ncHdh2RKO6sCdRaaZNq9n3R6ziaxgrOEaCF3UqU0X0gF013pkMWeglXSIpReynwoRwbMKzQmjiUzGB_6SkPkIgRfRFGggiA4JvUM3n5CqEiFVkG7HaIUGiqka8x3pbwYvk0IJk5JAztk_lZqZ8w3fXH2d_U12etNhoP5oD96Oif7ODYluPCC1PP3wlxCAJCnV3bcvwCxaKqP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+26th+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops&rft.atitle=Quantitative+Trait+Locus+Analysis+Using+a+Partitioned+Linear+Model+on+a+GPU+Cluster&rft.au=Bailey%2C+P.+E.&rft.au=Patki%2C+T.&rft.au=Striemer%2C+G.+M.&rft.au=Akoglu%2C+A.&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781467309745&rft.spage=752&rft.epage=760&rft_id=info:doi/10.1109%2FIPDPSW.2012.93&rft.externalDocID=6270715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/sc.gif&client=summon&freeimage=true