Quantitative Trait Locus Analysis Using a Partitioned Linear Model on a GPU Cluster
Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging a...
Saved in:
| Published in | 2012 26th IEEE International Parallel and Distributed Processing Symposium Workshops pp. 752 - 760 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2012
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1467309745 9781467309745 |
| DOI | 10.1109/IPDPSW.2012.93 |
Cover
| Abstract | Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging and slow. One approach, which is the subject of this paper, is Partitioned Linear Modeling (PLM), lends itself well to parallelization, both by MPI between nodes and by GPU within nodes. Large input datasets make this parallelization on the GPU non-trivial. This paper compares several candidate integrated MPI/GPU parallel implementations of PLM on a cluster of GPUs for varied data sets. We compare them to a naive implementation and show that while that implementation is quite efficient on small data sets, when the data set is large, data-transfer overhead dominates an all-GPU implementation of PLM. We show that an MPI implementation that selectively uses the GPU for a relative minority of the code performs best and results in a 64 improvement over the MPI/CPU version. As a first implementation of PLM on GPUs, our work serves as a reminder that different GPU implementations are needed, depending on the size of the working set, and that data intensive applications are not necessarily trivially parallelizable with GPUs. |
|---|---|
| AbstractList | Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant continuous phenotypes in non-constant environments. This requires generation and processing of large datasets, which makes analysis challenging and slow. One approach, which is the subject of this paper, is Partitioned Linear Modeling (PLM), lends itself well to parallelization, both by MPI between nodes and by GPU within nodes. Large input datasets make this parallelization on the GPU non-trivial. This paper compares several candidate integrated MPI/GPU parallel implementations of PLM on a cluster of GPUs for varied data sets. We compare them to a naive implementation and show that while that implementation is quite efficient on small data sets, when the data set is large, data-transfer overhead dominates an all-GPU implementation of PLM. We show that an MPI implementation that selectively uses the GPU for a relative minority of the code performs best and results in a 64 improvement over the MPI/CPU version. As a first implementation of PLM on GPUs, our work serves as a reminder that different GPU implementations are needed, depending on the size of the working set, and that data intensive applications are not necessarily trivially parallelizable with GPUs. |
| Author | Striemer, G. M. Goff, S. Patki, T. Vaughn, M. Bailey, P. E. Akoglu, A. Bradbury, P. Lowenthal, D. K. Wang, L. |
| Author_xml | – sequence: 1 givenname: P. E. surname: Bailey fullname: Bailey, P. E. – sequence: 2 givenname: T. surname: Patki fullname: Patki, T. – sequence: 3 givenname: G. M. surname: Striemer fullname: Striemer, G. M. – sequence: 4 givenname: A. surname: Akoglu fullname: Akoglu, A. – sequence: 5 givenname: D. K. surname: Lowenthal fullname: Lowenthal, D. K. – sequence: 6 givenname: P. surname: Bradbury fullname: Bradbury, P. – sequence: 7 givenname: M. surname: Vaughn fullname: Vaughn, M. – sequence: 8 givenname: L. surname: Wang fullname: Wang, L. – sequence: 9 givenname: S. surname: Goff fullname: Goff, S. |
| BookMark | eNotjU1Lw0AYhBdU0NZevXjZP5C4X9nNHkvUWogYaYPH8nbzRlbiRrKJ0H_fgM5lGJ5hZkEuQx-QkDvOUs6ZfdhWj9XuIxWMi9TKC7LgShvJrFHZNVnF-MVmmZwLwW7I7n2CMPoRRv-LdD-AH2nZuynSdYDuFH2kdfThkwKtYJiLfj5raOkDwkBf-wY72oeZbqqaFt0URxxuyVULXcTVvy9J_fy0L16S8m2zLdZl4rnJxuToXJO14JhhrtHKMmcz3WpgRyXmbBCh0YjWgkJrjBKuYVrledYaI52Ucknu_3Y9Ih5-Bv8Nw-mghWGGZ_IMnXdPhA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPSW.2012.93 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 760 |
| ExternalDocumentID | 6270715 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i175t-bccd5fac070cd6490c956f6a0b42d647eead6ee99a4e97742cd064885f773c333 |
| IEDL.DBID | RIE |
| ISBN | 1467309745 9781467309745 |
| IngestDate | Wed Aug 27 04:57:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-bccd5fac070cd6490c956f6a0b42d647eead6ee99a4e97742cd064885f773c333 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_6270715 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-May |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 26th IEEE International Parallel and Distributed Processing Symposium Workshops |
| PublicationTitleAbbrev | ipdpsw |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000781220 |
| Score | 1.4846475 |
| Snippet | Quantitative Trait Locus (QTL) analysis is a statistical technique that allows understanding of the relationship between plant genotypes and the resultant... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 752 |
| SubjectTerms | Genetics Graphics processing unit Instruction sets Kernel Memory management Random access memory Registers |
| Title | Quantitative Trait Locus Analysis Using a Partitioned Linear Model on a GPU Cluster |
| URI | https://ieeexplore.ieee.org/document/6270715 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNE0cx54LpSBAQaWiW-WvShVViiBZ-PXcOU1BiIEtdqTEsc95Z_vdO0IuvEYZEyZQqZYBY1IFimU20MxFUGMxXRKyLR75eMruZumsRS63sTDOOU8-cyFe-rN8uzYVbpX1eZwBIqZt0s4Er2O1tvspKFoTx5GP3eJgtuAnp42kU1PeiDYOItm_za_yyQtSu-IQD51_pFbxyDLaJQ9Nm2pCyWtYlTo0n7_kGv_b6D3S-47ho_kWnfZJyxVdMnmqVOHDyuAnRwGnliW9h0d80EachHoOAVU0R5vyOkaWwoIVJgTFvGkrui7g7k0-pcNVhSoLPTIdXT8Px8EmrUKwBF-hDLQxNl0oA5PdWM5kZGCNtOAq0iyGcubAuLhzUirm0DuMjQW_RYh0kWWJSZLkgHQKePshoUILa5LBgKMQGuqjW8x2ZSIJ3yYEE0ekix0yf6uVM-abvjj-u_qE7OB41HTCU9Ip3yt3BpBf6nM_1l-6fqdC |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjbG1W3dGERTIDBC5ka4tCZEMo9vFv973OobGePC2dsnWta97r-33fY-QG6tRxoRyJE9jh7FYOpJF2kmZ8aBGY7okRFuMwt6UPc74rEZut1wYY4wFnxkXL-1Zvl6rArfKWqEfgUfkO2SXM8Z4ydba7qigbI3ve5a9FYLhQqTMK1GnqryRbWx7cauf3CXjFwR3-S4eO_9IrmJ9S_eADKtWlZCSV7fIU1d9_hJs_G-zD0nzm8VHk61_OiI1kzXI-LmQmSWWwW-Ogqda5nQAj_iglTwJtSgCKmmCVmWVjDSFJStMCYqZ01Z0ncHdh2RKO6sCdRaaZNq9n3R6ziaxgrOEaCF3UqU0X0gF013pkMWeglXSIpReynwoRwbMKzQmjiUzGB_6SkPkIgRfRFGggiA4JvUM3n5CqEiFVkG7HaIUGiqka8x3pbwYvk0IJk5JAztk_lZqZ8w3fXH2d_U12etNhoP5oD96Oif7ODYluPCC1PP3wlxCAJCnV3bcvwCxaKqP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+26th+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops&rft.atitle=Quantitative+Trait+Locus+Analysis+Using+a+Partitioned+Linear+Model+on+a+GPU+Cluster&rft.au=Bailey%2C+P.+E.&rft.au=Patki%2C+T.&rft.au=Striemer%2C+G.+M.&rft.au=Akoglu%2C+A.&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781467309745&rft.spage=752&rft.epage=760&rft_id=info:doi/10.1109%2FIPDPSW.2012.93&rft.externalDocID=6270715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309745/sc.gif&client=summon&freeimage=true |