Further studies on zhang neural-dynamics and gradient dynamics for online nonlinear equations solving

By following Zhang et al's neural-network design-method, a special kind of neural dynamics is generalized, developed and investigated in this work for online solution of nonlinear equation f(x) = 0. Different from conventional gradient-based dynamics (or termed, gradient-dynamics, GD), the resu...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Automation and Logistics pp. 566 - 571
Main Authors Yunong Zhang, Peng Xu, Ning Tan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424447947
1424447941
ISSN2161-8151
DOI10.1109/ICAL.2009.5262860

Cover

Abstract By following Zhang et al's neural-network design-method, a special kind of neural dynamics is generalized, developed and investigated in this work for online solution of nonlinear equation f(x) = 0. Different from conventional gradient-based dynamics (or termed, gradient-dynamics, GD), the resultant Zhang neural-dynamics (or termed, Zhang dynamics, ZD) is designed based on the elimination of an indefinite error-function (rather than the elimination of a square-based positive energy-function usually associated with gradient-based approaches). For comparative purposes, the gradient dynamics is developed and exploited as well for solving online such nonlinear equations. Conventionally and geometrically speaking, the gradient dynamics evolves along the surface descent direction (specifically, the tangent direction) of the square-based energy-function curve; but, how does Zhang neural-dynamics evolve? Together with our previous studies on gradient dynamics and Zhang dynamics, in this paper we further analyze, investigate and compare the characteristics of such two dynamics. Computer simulation results via three illustrative examples might show us some interesting implications, in addition to the efficacy of Zhang dynamics on nonlinear equations solving.
AbstractList By following Zhang et al's neural-network design-method, a special kind of neural dynamics is generalized, developed and investigated in this work for online solution of nonlinear equation f(x) = 0. Different from conventional gradient-based dynamics (or termed, gradient-dynamics, GD), the resultant Zhang neural-dynamics (or termed, Zhang dynamics, ZD) is designed based on the elimination of an indefinite error-function (rather than the elimination of a square-based positive energy-function usually associated with gradient-based approaches). For comparative purposes, the gradient dynamics is developed and exploited as well for solving online such nonlinear equations. Conventionally and geometrically speaking, the gradient dynamics evolves along the surface descent direction (specifically, the tangent direction) of the square-based energy-function curve; but, how does Zhang neural-dynamics evolve? Together with our previous studies on gradient dynamics and Zhang dynamics, in this paper we further analyze, investigate and compare the characteristics of such two dynamics. Computer simulation results via three illustrative examples might show us some interesting implications, in addition to the efficacy of Zhang dynamics on nonlinear equations solving.
Author Yunong Zhang
Peng Xu
Ning Tan
Author_xml – sequence: 1
  surname: Yunong Zhang
  fullname: Yunong Zhang
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-Sen Univ. (SYSU), Guangzhou, China
– sequence: 2
  surname: Peng Xu
  fullname: Peng Xu
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-Sen Univ. (SYSU), Guangzhou, China
– sequence: 3
  surname: Ning Tan
  fullname: Ning Tan
  organization: Sch. of Software, Sun Yat-Sen Univ., Guangzhou, China
BookMark eNpVUFFLwzAYjLiB29wPEF_yBzrzpUmTPMpwUxj4os8jTb92kS7VpBXmr3djQ_DpuOPu4G5KRqELSMgdsAUAMw8vy8fNgjNmFpIXXBfsisyN0iC4EEIZKa7_caFGZMKhgEyDhDGZnqKGyVyZGzJP6YMxBkwZo8yE4GqI_Q4jTf1QeUy0C_RnZ0NDAw7Rtll1CHbvXaI2VLSJ9mgKPf1T6y4eI60PSMMZbaT4NdjedyHR1LXfPjS3ZFzbNuH8gjPyvnp6Wz5nm9f1aV3mQck-K53hiIKVyjGRW-5kjQ6sllaUxwW1NKp0UAldOZ2DK4TgqHMnVV2CKKDOZ-T-3OsRcfsZ_d7Gw_byWv4Li45f1A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAL.2009.5262860
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424447954
142444795X
EndPage 571
ExternalDocumentID 5262860
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-bc92ee40b7c043a2c5fec1a85a4b990f597bc1d48dc831c6442e83c57fb1461f3
IEDL.DBID RIE
ISBN 9781424447947
1424447941
ISSN 2161-8151
IngestDate Wed Aug 27 02:28:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009905379
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bc92ee40b7c043a2c5fec1a85a4b990f597bc1d48dc831c6442e83c57fb1461f3
PageCount 6
ParticipantIDs ieee_primary_5262860
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Automation and Logistics
PublicationTitleAbbrev ICAL
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079979
ssj0000453144
Score 1.50103
Snippet By following Zhang et al's neural-network design-method, a special kind of neural dynamics is generalized, developed and investigated in this work for online...
SourceID ieee
SourceType Publisher
StartPage 566
SubjectTerms Computer errors
Convergence
Design automation
Energy function
Error correction
Error function
Gradient
Information science
Logistics
Neodymium
Neural dynamics (ND)
Nonlinear equation
Nonlinear equations
Problem-solving
Sun
Title Further studies on zhang neural-dynamics and gradient dynamics for online nonlinear equations solving
URI https://ieeexplore.ieee.org/document/5262860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDDiNnYetmdEVSEVMVCpW-VXEAKlkCZLfz2-OA0PMTAlsZQ4cSzdd3fffYfQNTfMRtJEhCqakYQZSkSWW6L939dSSO4MOIqzh2w6T-4X6aKHbrpaGOdcQz5zIzhtcvl2ZWoIlY1TBoWU3kHf4SILtVpdPMVDk5i2pqqJr0RcykZqj3lQQ4S3bNu6LhBVp1u5p_aatxlPGskxCBEEJct2wh-dVxrDM9lHs-0rB77J66iu9Mhsfqk5_vebDtDwq8QPP3bG6xD1XHGE9r6pEw6Qm9QlwEO8DlxDvCrwBuLLGEQw1RuxoZv9GqvC4ueyIY9VuBv1cBgHIQ5chKMqsfsI2uJr7Dc9BDOGaD65e7qdkrYrA3nxUKMi2kjmXBJpbqIkVgzoaoYqkapEe9OWew9FG2oTYY2IqfF4izkRm5TnGnqI5_Ex6vtZ3QnClmvFlL9DCZPEFsQN08g_T0uTOun0KRrAgi3fg_DGsl2rs7-Hz9FuSPUAO-8C9auydpceMVT6qtkqn1ELuww
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjbmPHbuwZURVoK4ZW6lb5FYRALaTJ0l-PHafhIQamJJYSJ46l--7uu-8AuE40MZHQEcIS9xAlGiPeSw1S7u8rwUVitXcUR-PeYEofZmzWADd1LYy1tiSf2Y4_LXP5ZqkLHyrrMuILKZ2DvsUopSxUa9URFQdOYlwZqzLCEiVClGJ7xMEaxJ1t21R2eVl1vBF8qq6TKueJI9H1UgRBy7Ka8kfvldL09PfAaPPSgXHy2ily1dHrX3qO__2qfdD-KvKDT7X5OgANuzgEu9_0CVvA9ovMA0S4CmxDuFzAtY8wQy-DKd-QCf3sV1AuDHzOSvpYDutRB4hhkOKAi3CUGbQfQV18Bd229-GMNpj27ya3A1T1ZUAvDmzkSGlBrKWRSnREY0k8YU1jyZmkyhm31PkoSmNDudE8xtohLmJ5rFmSKt9FPI2PQNPNao8BNImSRLo7JNc0Nl7ekEXueUpoZoVVJ6DlF2z-HqQ35tVanf49fAW2B5PRcD68Hz-egZ2Q-PFcvXPQzLPCXjj8kKvLctt8Ak2_vlk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Automation+and+Logistics&rft.atitle=Further+studies+on+zhang+neural-dynamics+and+gradient+dynamics+for+online+nonlinear+equations+solving&rft.au=Yunong+Zhang&rft.au=Peng+Xu&rft.au=Ning+Tan&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424447947&rft.issn=2161-8151&rft.spage=566&rft.epage=571&rft_id=info:doi/10.1109%2FICAL.2009.5262860&rft.externalDocID=5262860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-8151&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-8151&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-8151&client=summon