Semi-supervised face recognition with LDA self-training

Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled...

Full description

Saved in:
Bibliographic Details
Published in2011 18th IEEE International Conference on Image Processing pp. 3041 - 3044
Main Authors Xuran Zhao, Evans, N., Dugelay, J-C
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2011
Subjects
Online AccessGet full text
ISBN1457713047
9781457713040
ISSN1522-4880
DOI10.1109/ICIP.2011.6116305

Cover

Abstract Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled face images and in this case LDA-based algorithms generally lead to poor performance. The contributions in this paper relate to a new semi-supervised, self-training LDA-based algorithm which is used to augment a manually labelled training set with new data from an unlabelled, auxiliary set and hence to improve recognition performance. Without the cost of manual labelling such auxiliary data is often easily acquired but is not normally useful for learning. We report face recognition experiments on 3 independent databases which demonstrate a constant improvement of our baseline, supervised LDA system. The performance of our algorithm is also shown to significantly outperform other semi-supervised learning algorithms.
AbstractList Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled face images and in this case LDA-based algorithms generally lead to poor performance. The contributions in this paper relate to a new semi-supervised, self-training LDA-based algorithm which is used to augment a manually labelled training set with new data from an unlabelled, auxiliary set and hence to improve recognition performance. Without the cost of manual labelling such auxiliary data is often easily acquired but is not normally useful for learning. We report face recognition experiments on 3 independent databases which demonstrate a constant improvement of our baseline, supervised LDA system. The performance of our algorithm is also shown to significantly outperform other semi-supervised learning algorithms.
Author Xuran Zhao
Dugelay, J-C
Evans, N.
Author_xml – sequence: 1
  surname: Xuran Zhao
  fullname: Xuran Zhao
  email: zhaox@eurecom.fr
  organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France
– sequence: 2
  givenname: N.
  surname: Evans
  fullname: Evans, N.
  email: evans@eurecom.fr
  organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France
– sequence: 3
  givenname: J-C
  surname: Dugelay
  fullname: Dugelay, J-C
  email: dugelay@eurecom.fr
  organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France
BookMark eNo1j8tKw0AYRkesYFP7AOImLzBx_sw1yxJvgUAL6rpMJv_UkXZSMlHx7RWsq4-zOAe-jMziEJGQa2AFAKtum7rZFCUDKBSA4kyekWWlDQipNXDG-TnJ_kHoGZmDLEsqjGGXJEvpnbFfmcOc6Gc8BJo-jjh-hoR97q3DfEQ37GKYwhDzrzC95e3dKk-493QabYgh7q7Ihbf7hMvTLsjrw_1L_UTb9WNTr1oaQMuJdp3ofe8BRGnASV4h60Bipyp0Frjz2nshhbJWKVYxD7YTqEyvtZROGskX5OavGxBxexzDwY7f29Np_gPynkoJ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2011.6116305
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781457713033
1457713020
1457713039
9781457713026
EndPage 3044
ExternalDocumentID 6116305
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-bb4dfdf114281c539e0b15eb69eca13cf7ff4546aa66090f1ab4e68d7755c5853
IEDL.DBID RIE
ISBN 1457713047
9781457713040
ISSN 1522-4880
IngestDate Wed Aug 27 03:29:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bb4dfdf114281c539e0b15eb69eca13cf7ff4546aa66090f1ab4e68d7755c5853
PageCount 4
ParticipantIDs ieee_primary_6116305
PublicationCentury 2000
PublicationDate 2011-Sept.
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-Sept.
PublicationDecade 2010
PublicationTitle 2011 18th IEEE International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0000669215
Score 1.9612477
Snippet Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of...
SourceID ieee
SourceType Publisher
StartPage 3041
SubjectTerms Algorithm design and analysis
Face
Face recognition
LDA
Principal component analysis
self-training
semi-supervised learning
Training
Vectors
Title Semi-supervised face recognition with LDA self-training
URI https://ieeexplore.ieee.org/document/6116305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKJ6YCLeJWBkbcxomPeEQF1CKKKkGlbpVPqQLSiiQLvx47VwViYIsdWYkdO-971_cAuI4SJ4SxldBBohjiKDJQKIUgQ1xypy-ISHuP7uyZThb4cUmWHXDT5sIYY8rgMzP0l6UvX29U4U1lI4ocevCEpXuM8SpXq7WnONHJI7Tj2fM8MiVXqlO2_CYtk7oIczpZiFnD9VS3G3cnCvloOp7OK2bP-mk_yq6UUuehB2bN-1bBJm_DIpdD9fWLyvG_EzoAg11-XzBvJdch6Jj0CPRqQBrUxz3rA_ZiPtYwK7b-h5K5W1a4kW3M0SYNvBk3eLq7DTLzbmFTb2IAFg_3r-MJrCstwLWDDzmUEmurrc-rTZAiMTehRMRIyo0SKFaWWYsJpkJQGvLQIiGxoYlmjBDlFI74GHTTTWpOQGCwtW5jhJqGwg1AAnnno7SRdn0Joaeg79dhta3INFb1Epz93X0O9isjrg_qugDd_LMwlw4F5PKq_PzflB6pTA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-IHvSECsa3O3i0sI4-tqNBCSgQEiHhRtqtTYg6iNsu_vV-3YtoPHhbuzTbmq_7nr_fh9Cd54MSpkZhMIl6mHqexjIMCRYkUAH4C9KLbEZ3MuXDBX1esmUD3ddYGK11XnymO_Yyz-VHmzCzobIuJ2A9WMLSfQZehSjQWnVEBZRn4JEd055lksnZUsHdsmKaw7qYAK_MpaJieyrHVcKTuEF31B_NCm7P8nk_Gq_kemfQRJPqjYtyk7dOlqpO-PWLzPG_n3SE2juEnzOrddcxauj4BDVLk9QpD3zSQuJVf6xxkm3tLyWBW0bCyrrqaBM7NpDrjB8fnES_G1x1nGijxeBp3h_istcCXoMBkWKlaGQiY5G1PglZL9CuIkwrHuhQkl5ohDGUUS4l527gGiIV1dyPhGAsBJejd4r24k2sz5CjqTEgGm7EXQkLiCQ2_aiMF8Gcz_g5atl9WG0LOo1VuQUXf0_fooPhfDJejUfTl0t0WIR0bYnXFdpLPzN9DTZBqm5yUfgGstysnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+18th+IEEE+International+Conference+on+Image+Processing&rft.atitle=Semi-supervised+face+recognition+with+LDA+self-training&rft.au=Xuran+Zhao&rft.au=Evans%2C+N.&rft.au=Dugelay%2C+J-C&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781457713040&rft.issn=1522-4880&rft.spage=3041&rft.epage=3044&rft_id=info:doi/10.1109%2FICIP.2011.6116305&rft.externalDocID=6116305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon