Semi-supervised face recognition with LDA self-training
Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled...
Saved in:
Published in | 2011 18th IEEE International Conference on Image Processing pp. 3041 - 3044 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 1457713047 9781457713040 |
ISSN | 1522-4880 |
DOI | 10.1109/ICIP.2011.6116305 |
Cover
Abstract | Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled face images and in this case LDA-based algorithms generally lead to poor performance. The contributions in this paper relate to a new semi-supervised, self-training LDA-based algorithm which is used to augment a manually labelled training set with new data from an unlabelled, auxiliary set and hence to improve recognition performance. Without the cost of manual labelling such auxiliary data is often easily acquired but is not normally useful for learning. We report face recognition experiments on 3 independent databases which demonstrate a constant improvement of our baseline, supervised LDA system. The performance of our algorithm is also shown to significantly outperform other semi-supervised learning algorithms. |
---|---|
AbstractList | Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of samples in order to learn reliable projections. In many practical applications of face recognition there is only a small number of labelled face images and in this case LDA-based algorithms generally lead to poor performance. The contributions in this paper relate to a new semi-supervised, self-training LDA-based algorithm which is used to augment a manually labelled training set with new data from an unlabelled, auxiliary set and hence to improve recognition performance. Without the cost of manual labelling such auxiliary data is often easily acquired but is not normally useful for learning. We report face recognition experiments on 3 independent databases which demonstrate a constant improvement of our baseline, supervised LDA system. The performance of our algorithm is also shown to significantly outperform other semi-supervised learning algorithms. |
Author | Xuran Zhao Dugelay, J-C Evans, N. |
Author_xml | – sequence: 1 surname: Xuran Zhao fullname: Xuran Zhao email: zhaox@eurecom.fr organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France – sequence: 2 givenname: N. surname: Evans fullname: Evans, N. email: evans@eurecom.fr organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France – sequence: 3 givenname: J-C surname: Dugelay fullname: Dugelay, J-C email: dugelay@eurecom.fr organization: Multimedia Commun. Dept., EURECOM, Sophia-Antipolis, France |
BookMark | eNo1j8tKw0AYRkesYFP7AOImLzBx_sw1yxJvgUAL6rpMJv_UkXZSMlHx7RWsq4-zOAe-jMziEJGQa2AFAKtum7rZFCUDKBSA4kyekWWlDQipNXDG-TnJ_kHoGZmDLEsqjGGXJEvpnbFfmcOc6Gc8BJo-jjh-hoR97q3DfEQ37GKYwhDzrzC95e3dKk-493QabYgh7q7Ihbf7hMvTLsjrw_1L_UTb9WNTr1oaQMuJdp3ofe8BRGnASV4h60Bipyp0Frjz2nshhbJWKVYxD7YTqEyvtZROGskX5OavGxBxexzDwY7f29Np_gPynkoJ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2011.6116305 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781457713033 1457713020 1457713039 9781457713026 |
EndPage | 3044 |
ExternalDocumentID | 6116305 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-bb4dfdf114281c539e0b15eb69eca13cf7ff4546aa66090f1ab4e68d7755c5853 |
IEDL.DBID | RIE |
ISBN | 1457713047 9781457713040 |
ISSN | 1522-4880 |
IngestDate | Wed Aug 27 03:29:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-bb4dfdf114281c539e0b15eb69eca13cf7ff4546aa66090f1ab4e68d7755c5853 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6116305 |
PublicationCentury | 2000 |
PublicationDate | 2011-Sept. |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2011 18th IEEE International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 ssj0000669215 |
Score | 1.9612477 |
Snippet | Face recognition algorithms based on linear discriminant analysis (LDA) generally give satisfactory performance but tend to require a relatively high number of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3041 |
SubjectTerms | Algorithm design and analysis Face Face recognition LDA Principal component analysis self-training semi-supervised learning Training Vectors |
Title | Semi-supervised face recognition with LDA self-training |
URI | https://ieeexplore.ieee.org/document/6116305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKJ6YCLeJWBkbcxomPeEQF1CKKKkGlbpVPqQLSiiQLvx47VwViYIsdWYkdO-971_cAuI4SJ4SxldBBohjiKDJQKIUgQ1xypy-ISHuP7uyZThb4cUmWHXDT5sIYY8rgMzP0l6UvX29U4U1lI4ocevCEpXuM8SpXq7WnONHJI7Tj2fM8MiVXqlO2_CYtk7oIczpZiFnD9VS3G3cnCvloOp7OK2bP-mk_yq6UUuehB2bN-1bBJm_DIpdD9fWLyvG_EzoAg11-XzBvJdch6Jj0CPRqQBrUxz3rA_ZiPtYwK7b-h5K5W1a4kW3M0SYNvBk3eLq7DTLzbmFTb2IAFg_3r-MJrCstwLWDDzmUEmurrc-rTZAiMTehRMRIyo0SKFaWWYsJpkJQGvLQIiGxoYlmjBDlFI74GHTTTWpOQGCwtW5jhJqGwg1AAnnno7SRdn0Joaeg79dhta3INFb1Epz93X0O9isjrg_qugDd_LMwlw4F5PKq_PzflB6pTA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-IHvSECsa3O3i0sI4-tqNBCSgQEiHhRtqtTYg6iNsu_vV-3YtoPHhbuzTbmq_7nr_fh9Cd54MSpkZhMIl6mHqexjIMCRYkUAH4C9KLbEZ3MuXDBX1esmUD3ddYGK11XnymO_Yyz-VHmzCzobIuJ2A9WMLSfQZehSjQWnVEBZRn4JEd055lksnZUsHdsmKaw7qYAK_MpaJieyrHVcKTuEF31B_NCm7P8nk_Gq_kemfQRJPqjYtyk7dOlqpO-PWLzPG_n3SE2juEnzOrddcxauj4BDVLk9QpD3zSQuJVf6xxkm3tLyWBW0bCyrrqaBM7NpDrjB8fnES_G1x1nGijxeBp3h_istcCXoMBkWKlaGQiY5G1PglZL9CuIkwrHuhQkl5ohDGUUS4l527gGiIV1dyPhGAsBJejd4r24k2sz5CjqTEgGm7EXQkLiCQ2_aiMF8Gcz_g5atl9WG0LOo1VuQUXf0_fooPhfDJejUfTl0t0WIR0bYnXFdpLPzN9DTZBqm5yUfgGstysnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+18th+IEEE+International+Conference+on+Image+Processing&rft.atitle=Semi-supervised+face+recognition+with+LDA+self-training&rft.au=Xuran+Zhao&rft.au=Evans%2C+N.&rft.au=Dugelay%2C+J-C&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781457713040&rft.issn=1522-4880&rft.spage=3041&rft.epage=3044&rft_id=info:doi/10.1109%2FICIP.2011.6116305&rft.externalDocID=6116305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon |