RTSeg: Real-Time Semantic Segmentation Comparative Study
Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direc...
Saved in:
Published in | Proceedings - International Conference on Image Processing pp. 1603 - 1607 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP.2018.8451495 |
Cover
Abstract | Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In this paper, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The framework is comprised of different network architectures for feature extraction such as VGG16, Resnet18, MobileNet, and ShuffleNet. It is also comprised of multiple meta-architectures for segmentation that define the decoding methodology. These include SkipNet, UNet, and Dilation Frontend. Experimental results are presented on the Cityscapes dataset for urban scenes. The modular design allows novel architectures to emerge, that lead to 143x GFLOPs reduction in comparison to SegNet. This benchmarking framework is publicly available at 1 1 https://github.com/MSiam/TFSegmentation. |
---|---|
AbstractList | Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In this paper, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The framework is comprised of different network architectures for feature extraction such as VGG16, Resnet18, MobileNet, and ShuffleNet. It is also comprised of multiple meta-architectures for segmentation that define the decoding methodology. These include SkipNet, UNet, and Dilation Frontend. Experimental results are presented on the Cityscapes dataset for urban scenes. The modular design allows novel architectures to emerge, that lead to 143x GFLOPs reduction in comparison to SegNet. This benchmarking framework is publicly available at 1 1 https://github.com/MSiam/TFSegmentation. |
Author | Abdel-Razek, Moemen Siam, Mennatullah Gamal, Mostafa Jagersand, Martin Yogamani, Senthil |
Author_xml | – sequence: 1 givenname: Mennatullah surname: Siam fullname: Siam, Mennatullah organization: Valeo Vision Systems, Cairo University, University of Alberta – sequence: 2 givenname: Mostafa surname: Gamal fullname: Gamal, Mostafa organization: Valeo Vision Systems, Cairo University, University of Alberta – sequence: 3 givenname: Moemen surname: Abdel-Razek fullname: Abdel-Razek, Moemen organization: Valeo Vision Systems, Cairo University, University of Alberta – sequence: 4 givenname: Senthil surname: Yogamani fullname: Yogamani, Senthil organization: Valeo Vision Systems, Cairo University, University of Alberta – sequence: 5 givenname: Martin surname: Jagersand fullname: Jagersand, Martin organization: Valeo Vision Systems, Cairo University, University of Alberta |
BookMark | eNotj81Kw0AURkdRsK19AHGTF0icOz-due4kWA0UlDauy_zclEiTlCQKfXsDdvWdxeHAN2c3bdcSYw_AMwCOT0VefGaCg82s0qBQX7ElGgvKIBq-AnHNZkJaSK1WeMfmw_DN-eRLmDG7LXd0eE625I5pWTeU7Khx7ViHCQ4NtaMb665N8q45uX7i38kYf-L5nt1W7jjQ8rIL9rV-LfP3dPPxVuQvm7QGo8fUI1kMArBaiaBAoyXlg0Xto6_Ak3HeGhu4ERAjyiqG6ERUQkuhPMggF-zxv1sT0f7U143rz_vLUfkHxDRIYQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2018.8451495 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781479970612 1479970611 |
EISSN | 2381-8549 |
EndPage | 1607 |
ExternalDocumentID | 8451495 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-b9e89c219f62c41598e4bc895bdbf1be7ab878c0721dd93fdcda2d425324b13c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:50:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b9e89c219f62c41598e4bc895bdbf1be7ab878c0721dd93fdcda2d425324b13c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8451495 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings - International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.4393883 |
Snippet | Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1603 |
SubjectTerms | Benchmark testing benchmarking framework Computer architecture Convolution Decoding Feature extraction Real-time systems realtime semantic segmentation Semantics |
Title | RTSeg: Real-Time Semantic Segmentation Comparative Study |
URI | https://ieeexplore.ieee.org/document/8451495 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXi0w60bbb0SCZhgCD8SbmRt3wgxTKPjoH-97VYhGg_emiVtl9e8vm_r930FuOkiZ0omjCZcahonLKWpDpGmzKYfCs156tTIo6fuYB4_LpJFDW53WhhELMlnGLhmeZZvXvTW_SrriDhxgL4Odc5lpdXafVw53xh_ahneyc6wNxw74pYIfKcft6eUxaPfhNH3tBVn5DnYFirQn78cGf_7XofQ3sv0yHhXgI6ghvkxND2uJD5r31sgJrMpru7JxIJC6jQfZIobG9G1to3VxquPctLbO4ETxy_8aMO8_zDrDai_MYGuLQwoqJIopLabUNaNtC3NUmCstJCJMioLFdrACy6080QzRrLMaJNGxqathVUqZJqdQCN_yfEUCCLLMI5UqpWJDSa2py1mQkd2DGQ8PIOWC8TytTLFWPoYnP_9-AIO3GJULLhLaBRvW7yy1bxQ1-UyfgGlt6CO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_3cGjHW5dWeuVSECBEH4k3MjavhFCGEbHQf96221CNB68NU26Lq95-17X7_sKcNfAkErBKGGhUCRgNCKR8pBE1KQfchWGkVUj9_qN9iR4nrJpCe63WhhEzMhn6Npmdpav12pjf5XVecBsQb8H-8zsKsJcrbXdXlnnmOLc0nsQ9U6zM7DULe4Ww37cn5LBR6sCve-Jc9bI0t2k0lWfvzwZ__tmR1DbCfWcwRaCjqGEyQlUisrSKfL2vQp8OB7h_NEZmrKQWNWHM8KVielCmcZ8VeiPEqe58wJ3LMPwowaT1tO42SbFnQlkYQqBlEiBXCjzGYobvjLgLDgGUnHBpJaxJ9GEnodcWVc0rQWNtdKRr03imsJKelTRUygn6wTPwEGkMQa-jJTUgUZmRho448o3z0AaeudQtYGYvea2GLMiBhd_d9_CQXvc6866nf7LJRzahck5cVdQTt82eG2wPZU32ZJ-AUX5o98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=RTSeg%3A+Real-Time+Semantic+Segmentation+Comparative+Study&rft.au=Siam%2C+Mennatullah&rft.au=Gamal%2C+Mostafa&rft.au=Abdel-Razek%2C+Moemen&rft.au=Yogamani%2C+Senthil&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1603&rft.epage=1607&rft_id=info:doi/10.1109%2FICIP.2018.8451495&rft.externalDocID=8451495 |