RTSeg: Real-Time Semantic Segmentation Comparative Study

Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direc...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 1603 - 1607
Main Authors Siam, Mennatullah, Gamal, Mostafa, Abdel-Razek, Moemen, Yogamani, Senthil, Jagersand, Martin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2018.8451495

Cover

Abstract Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In this paper, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The framework is comprised of different network architectures for feature extraction such as VGG16, Resnet18, MobileNet, and ShuffleNet. It is also comprised of multiple meta-architectures for segmentation that define the decoding methodology. These include SkipNet, UNet, and Dilation Frontend. Experimental results are presented on the Cityscapes dataset for urban scenes. The modular design allows novel architectures to emerge, that lead to 143x GFLOPs reduction in comparison to SegNet. This benchmarking framework is publicly available at 1 1 https://github.com/MSiam/TFSegmentation.
AbstractList Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In this paper, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The framework is comprised of different network architectures for feature extraction such as VGG16, Resnet18, MobileNet, and ShuffleNet. It is also comprised of multiple meta-architectures for segmentation that define the decoding methodology. These include SkipNet, UNet, and Dilation Frontend. Experimental results are presented on the Cityscapes dataset for urban scenes. The modular design allows novel architectures to emerge, that lead to 143x GFLOPs reduction in comparison to SegNet. This benchmarking framework is publicly available at 1 1 https://github.com/MSiam/TFSegmentation.
Author Abdel-Razek, Moemen
Siam, Mennatullah
Gamal, Mostafa
Jagersand, Martin
Yogamani, Senthil
Author_xml – sequence: 1
  givenname: Mennatullah
  surname: Siam
  fullname: Siam, Mennatullah
  organization: Valeo Vision Systems, Cairo University, University of Alberta
– sequence: 2
  givenname: Mostafa
  surname: Gamal
  fullname: Gamal, Mostafa
  organization: Valeo Vision Systems, Cairo University, University of Alberta
– sequence: 3
  givenname: Moemen
  surname: Abdel-Razek
  fullname: Abdel-Razek, Moemen
  organization: Valeo Vision Systems, Cairo University, University of Alberta
– sequence: 4
  givenname: Senthil
  surname: Yogamani
  fullname: Yogamani, Senthil
  organization: Valeo Vision Systems, Cairo University, University of Alberta
– sequence: 5
  givenname: Martin
  surname: Jagersand
  fullname: Jagersand, Martin
  organization: Valeo Vision Systems, Cairo University, University of Alberta
BookMark eNotj81Kw0AURkdRsK19AHGTF0icOz-due4kWA0UlDauy_zclEiTlCQKfXsDdvWdxeHAN2c3bdcSYw_AMwCOT0VefGaCg82s0qBQX7ElGgvKIBq-AnHNZkJaSK1WeMfmw_DN-eRLmDG7LXd0eE625I5pWTeU7Khx7ViHCQ4NtaMb665N8q45uX7i38kYf-L5nt1W7jjQ8rIL9rV-LfP3dPPxVuQvm7QGo8fUI1kMArBaiaBAoyXlg0Xto6_Ak3HeGhu4ERAjyiqG6ERUQkuhPMggF-zxv1sT0f7U143rz_vLUfkHxDRIYQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2018.8451495
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781479970612
1479970611
EISSN 2381-8549
EndPage 1607
ExternalDocumentID 8451495
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-b9e89c219f62c41598e4bc895bdbf1be7ab878c0721dd93fdcda2d425324b13c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b9e89c219f62c41598e4bc895bdbf1be7ab878c0721dd93fdcda2d425324b13c3
PageCount 5
ParticipantIDs ieee_primary_8451495
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.4393883
Snippet Semantic segmentation benefits robotics related applications, especially autonomous driving. Most of the research on semantic segmentation only focuses on...
SourceID ieee
SourceType Publisher
StartPage 1603
SubjectTerms Benchmark testing
benchmarking framework
Computer architecture
Convolution
Decoding
Feature extraction
Real-time systems
realtime
semantic segmentation
Semantics
Title RTSeg: Real-Time Semantic Segmentation Comparative Study
URI https://ieeexplore.ieee.org/document/8451495
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXi0w60bbb0SCZhgCD8SbmRt3wgxTKPjoH-97VYhGg_emiVtl9e8vm_r930FuOkiZ0omjCZcahonLKWpDpGmzKYfCs156tTIo6fuYB4_LpJFDW53WhhELMlnGLhmeZZvXvTW_SrriDhxgL4Odc5lpdXafVw53xh_ahneyc6wNxw74pYIfKcft6eUxaPfhNH3tBVn5DnYFirQn78cGf_7XofQ3sv0yHhXgI6ghvkxND2uJD5r31sgJrMpru7JxIJC6jQfZIobG9G1to3VxquPctLbO4ETxy_8aMO8_zDrDai_MYGuLQwoqJIopLabUNaNtC3NUmCstJCJMioLFdrACy6080QzRrLMaJNGxqathVUqZJqdQCN_yfEUCCLLMI5UqpWJDSa2py1mQkd2DGQ8PIOWC8TytTLFWPoYnP_9-AIO3GJULLhLaBRvW7yy1bxQ1-UyfgGlt6CO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_3cGjHW5dWeuVSECBEH4k3MjavhFCGEbHQf96221CNB68NU26Lq95-17X7_sKcNfAkErBKGGhUCRgNCKR8pBE1KQfchWGkVUj9_qN9iR4nrJpCe63WhhEzMhn6Npmdpav12pjf5XVecBsQb8H-8zsKsJcrbXdXlnnmOLc0nsQ9U6zM7DULe4Ww37cn5LBR6sCve-Jc9bI0t2k0lWfvzwZ__tmR1DbCfWcwRaCjqGEyQlUisrSKfL2vQp8OB7h_NEZmrKQWNWHM8KVielCmcZ8VeiPEqe58wJ3LMPwowaT1tO42SbFnQlkYQqBlEiBXCjzGYobvjLgLDgGUnHBpJaxJ9GEnodcWVc0rQWNtdKRr03imsJKelTRUygn6wTPwEGkMQa-jJTUgUZmRho448o3z0AaeudQtYGYvea2GLMiBhd_d9_CQXvc6866nf7LJRzahck5cVdQTt82eG2wPZU32ZJ-AUX5o98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=RTSeg%3A+Real-Time+Semantic+Segmentation+Comparative+Study&rft.au=Siam%2C+Mennatullah&rft.au=Gamal%2C+Mostafa&rft.au=Abdel-Razek%2C+Moemen&rft.au=Yogamani%2C+Senthil&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1603&rft.epage=1607&rft_id=info:doi/10.1109%2FICIP.2018.8451495&rft.externalDocID=8451495