Comparative analysis of motion based and feature based algorithms for object detection and tracking

Object detection and tracking in the video sequence is a challenging task and time consuming process. Intrinsic factors like pose, appearance, variation in scale and extrinsic factors like variation in illumination, occlusion and clutter are major factors effecting this task. The main aim of this wo...

Full description

Saved in:
Bibliographic Details
Published inICSoftComp : 2017 International Conference on Soft Computing and its Engineering Applications : 1-2 December 2017 pp. 1 - 7
Main Authors Vaidya, Bhaumik, Paunwala, Chirag
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2017
Subjects
Online AccessGet full text
DOI10.1109/ICSOFTCOMP.2017.8280088

Cover

Abstract Object detection and tracking in the video sequence is a challenging task and time consuming process. Intrinsic factors like pose, appearance, variation in scale and extrinsic factors like variation in illumination, occlusion and clutter are major factors effecting this task. The main aim of this work is to implement and compare different algorithms in challenging conditions and find the algorithm that performs very efficiently on real time videos. In this paper, two motion based algorithms Zivkovic Adaptive Gaussian Mixture Model (ADGMM) and Grimson Gaussian Mixture Models (GGMM) and two feature based algorithms Speeded up Robust features (SURF) and Haar Cascade are implemented. The comparison of these algorithms in real life challenges and application is done to find out suitable algorithm for a particular application.
AbstractList Object detection and tracking in the video sequence is a challenging task and time consuming process. Intrinsic factors like pose, appearance, variation in scale and extrinsic factors like variation in illumination, occlusion and clutter are major factors effecting this task. The main aim of this work is to implement and compare different algorithms in challenging conditions and find the algorithm that performs very efficiently on real time videos. In this paper, two motion based algorithms Zivkovic Adaptive Gaussian Mixture Model (ADGMM) and Grimson Gaussian Mixture Models (GGMM) and two feature based algorithms Speeded up Robust features (SURF) and Haar Cascade are implemented. The comparison of these algorithms in real life challenges and application is done to find out suitable algorithm for a particular application.
Author Vaidya, Bhaumik
Paunwala, Chirag
Author_xml – sequence: 1
  givenname: Bhaumik
  surname: Vaidya
  fullname: Vaidya, Bhaumik
  organization: GTU, India
– sequence: 2
  givenname: Chirag
  surname: Paunwala
  fullname: Paunwala, Chirag
  organization: EC Department, SCET, Surat, India
BookMark eNo1kN1OAjEUhGuiiYI8gRf2BcCeLcuevTQbURLMmsg9Of3DIrslbTXh7QXFq5nM5JuLGbDLPvSWsXsQEwBRPyya93a-atrXt0khoJpggUIgXrABlBJnhShldc1GKW2FEFDPsJRww3QTuj1Fyv7bcuppd0g-8eB4F7IPPVeUrDkWhjtL-Sva_2S3CdHnjy5xFyIPamt15sbmo5y4E5Ej6U_fb27ZlaNdsqOzDtlq_rRqXsbL9nnRPC7HHqoyj1WNDp0CZQhJEGosC1sDAFalKxBdrabKGG1qmBqJupo6XclfC4acHLK7v1lvrV3vo-8oHtbnG-QPuIBZNA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSOFTCOMP.2017.8280088
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538620537
9781538620533
EndPage 7
ExternalDocumentID 8280088
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b98f8fb1bda8a0a8c852e9111875f288f9b4bddcd914d38c74fc734d38c1daf3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b98f8fb1bda8a0a8c852e9111875f288f9b4bddcd914d38c74fc734d38c1daf3
PageCount 7
ParticipantIDs ieee_primary_8280088
PublicationCentury 2000
PublicationDate 2017-Dec.
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle ICSoftComp : 2017 International Conference on Soft Computing and its Engineering Applications : 1-2 December 2017
PublicationTitleAbbrev ICSOFTCOMP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968531
Score 1.6557083
Snippet Object detection and tracking in the video sequence is a challenging task and time consuming process. Intrinsic factors like pose, appearance, variation in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
background Modelling
Background substraction
Classification algorithms
Feature extraction
Gaussian mixture model
Grimson Gaussian Mixture Models
Haar Cascade
Object tracking
Robustness
Speeded up robust features
Zivkovic Adaptive Gaussian Mixture Model
Title Comparative analysis of motion based and feature based algorithms for object detection and tracking
URI https://ieeexplore.ieee.org/document/8280088
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0g61la8-LBE0QEjHhRvpTiboRHBf_ettuQDQevDVdmi1ttu-9b9_7HsANYZz1RWICGTvqBmMeCKLjgCfaRkc2ySbc8R3jx2T0TB7mg3kDbne1MFprLz7ToRv6f_mqkBtHlfVsdmAhizahmdKkqtXa8yksscgT1RKuqM9699nTZDjLJuOpU3ClYb36RxsVjyLDNoy396_EI2_hphSh_PplzfjfBzyE7r5eD013SHQEDZ0fQ3vbsAHV728HZLb3-ka8tiNBhUFVLx_kIE3ZCwoZ7Q0_tzPvL8V6Wb5-fCIb46JCOPIGKV16HVfuV5RrLh3t3oXZ8G6WjYK6y0KwtKFDGQhGDTUiEopT3udU0kGs3SfQZjImptQwQYRSUrGIKExlSoxMsR9Giht8Aq28yPUpIGWjC0EpNgmRhGPn-z1IU5uCKRVjydIz6LgtW6wqH41FvVvnf09fwIE7tko6cgmtcr3RVzYAKMW1P_lvPDuy1w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pCBeO3PXh0g63d1p4XCSgDEmfCjfRTiboZHBd_ve02IBoP3pouTZru43nfZ8_7vADcYMpoj4faEb6lbhBiDsfKd1ioTHRkkmzMLN-RjMPBE76fBbMGuN3UwiilSvGZcu2w_Jcvc7GyVFnXZAcGssgO2A0wxkFVrbVlVGhosMerRVxej3aH8eOkn8aTZGo1XJFbr__RSKXEkX4LJOsdVPKRV3dVcFd8_TJn_O8WD0BnW7EHpxssOgQNlR2B1rplA6zf4DYQ8dbtG7LakATmGlbdfKAFNWkuSKhVafm5nnl7zpeL4uX9E5ooF-bc0jdQqqJUcmXlimLJhCXeOyDt36XxwKn7LDgLEzwUDqdEE809LhlhPUYECXxlP4Iml9E-IZpyzKUUknpYIiIirEWEyqEnmUbHoJnlmToBUJr4ghOCdIgFZsg6fwdRZJIwKX0kaHQK2vbI5h-Vk8a8Pq2zv6evwd4gTUbz0XD8cA727S2shCQXoFksV-rShAMFvyqfgm_Dw7Yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICSoftComp+%3A+2017+International+Conference+on+Soft+Computing+and+its+Engineering+Applications+%3A+1-2+December+2017&rft.atitle=Comparative+analysis+of+motion+based+and+feature+based+algorithms+for+object+detection+and+tracking&rft.au=Vaidya%2C+Bhaumik&rft.au=Paunwala%2C+Chirag&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICSOFTCOMP.2017.8280088&rft.externalDocID=8280088