An optimization-based ensemble EMD for classification of hyperspectral images
Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternativ...
Saved in:
| Published in | 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) pp. 1045 - 1050 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2013
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781467346214 1467346217 |
| ISSN | 1091-5281 |
| DOI | 10.1109/I2MTC.2013.6555574 |
Cover
| Abstract | Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternative methodology based on the ensemble empirical mode decomposition (EEMD) and utilize the versatile support vector machine (SVM) as a classifier. An optimization problem, which minimizes a smooth function subjected to inequality constraints associated with the extrema, is formulated in each iteration step to enhance the benefits of the EEMD. Additionally, the intrinsic mode functions (IMFs) extracted by the optimization-based EEMD are taken as features of the hyperspectral dataset and classified by the SVM. Simulations on the Washington D.C. mall hyperspectral dataset confirm the promising performance of our approach. |
|---|---|
| AbstractList | Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternative methodology based on the ensemble empirical mode decomposition (EEMD) and utilize the versatile support vector machine (SVM) as a classifier. An optimization problem, which minimizes a smooth function subjected to inequality constraints associated with the extrema, is formulated in each iteration step to enhance the benefits of the EEMD. Additionally, the intrinsic mode functions (IMFs) extracted by the optimization-based EEMD are taken as features of the hyperspectral dataset and classified by the SVM. Simulations on the Washington D.C. mall hyperspectral dataset confirm the promising performance of our approach. |
| Author | Miao Zhang Yan Wang Qiang Wang Yi Shen Zhi He Xiaoshuai Li |
| Author_xml | – sequence: 1 surname: Yi Shen fullname: Yi Shen organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China – sequence: 2 surname: Zhi He fullname: Zhi He email: hzhdhz@126.com organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China – sequence: 3 surname: Xiaoshuai Li fullname: Xiaoshuai Li organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China – sequence: 4 surname: Qiang Wang fullname: Qiang Wang organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China – sequence: 5 surname: Miao Zhang fullname: Miao Zhang organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China – sequence: 6 surname: Yan Wang fullname: Yan Wang organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China |
| BookMark | eNo1UEtOwzAUNKJItCUXgI0vkPLs59jpsioFKjViU9aV4zyDUX6KsymnJ4Iym9FI85FmwWZt1xJj9wJWQsD6cS-L43YlQeBKZxOMumILobRBpSXiNUvWJv_XQs3YfEqJNJO5uGVJjF8AMBVpBDNnxablXT-GJnzbMXRtWtpIFac2UlPWxHfFE_fdwF1tYww-uF8X7zz_PPc0xJ7cONiah8Z-ULxjN97WkZILL9n78-64fU0Pby_77eaQBmGyMS2FywBspq00Cr0gWVLlpXbOWOtc6RBRSiDMSVdWgcuBKJfekTJg14hL9vDXG4jo1A_T-nA-Xd7AHxHvU_E |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/I2MTC.2013.6555574 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISBN | 1467346233 9781467346238 |
| EndPage | 1050 |
| ExternalDocumentID | 6555574 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i175t-b1c500a56a2743f1e2bedf26cc7aaccbc333220e38e6da40c80ee82fce470a933 |
| IEDL.DBID | RIE |
| ISBN | 9781467346214 1467346217 |
| ISSN | 1091-5281 |
| IngestDate | Wed Aug 27 04:13:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-b1c500a56a2743f1e2bedf26cc7aaccbc333220e38e6da40c80ee82fce470a933 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6555574 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-May |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) |
| PublicationTitleAbbrev | I2MTC |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001106307 ssj0006477 |
| Score | 1.6639103 |
| Snippet | Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1045 |
| SubjectTerms | Accuracy classification Empirical mode decomposition ensemble empirical mode decomposition (EEMD) Feature extraction hyperspectral images Hyperspectral imaging Roads support vector machine (SVM) Support vector machines |
| Title | An optimization-based ensemble EMD for classification of hyperspectral images |
| URI | https://ieeexplore.ieee.org/document/6555574 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgEhJc2MUuHziS4MSOnR5RaVWQgjhQqbcqtseigraoy4WvZ-ykLSAO5JREURYrmnnPfm-GkOtm7rgEh9EPhI6Qf7lIa6cjBn7NBiGFCiv4xZPs9sRjP-tvkJuVFwYAgvgMYr8b1vLtxCz8VNmtzHBTYpNsqlxWXq31fEriq0etyJb3UIbGKpgPkWzlSTB1ScWFRBC-rPVUH4ulm4Y1bx_S4qXlJV88rh_3o-9KSDudXVIsX7hSm7zFi7mOzeevWo7__aI9crQ2-NHnVeraJxswPiA732oTHpCtoA01s0NS3I3pBCPLqLZsRj7zWYr8F0b6HWi7uKcIfanxQNwrj8JVdOLoK5Lcyss5Ld_pcISxa3ZEep32S6sb1V0YoiFCi3mkE5MxVmayRALLXQKpButSaYwqS2O04RyDAgOeg7SlYCZnAHnqDAjFyibnx6QxnozhhNAMktxixhSMOwHcltZYl1iltGQK73RKDv0QDT6qQhuDenTO_j59TrbT0JvCqw8vSGM-XcAlIoS5vgq_xhf7VLSB |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEXdrHjA0dSnNhx0iNiUVmCOBSptyq2xwJBW9TlwtczdtMWEAdySqIoixXNvGe_NwNwWs-dUOgo-qHUEfEvF2ntdMTRr9kQpMjCCn7xqBrP8q6VtubgbOqFQcQgPsOa3w1r-bZnRn6q7FyltGVyHhZTKWU6dmvNZlRiXz9qSre8izK0VqGMSHQrj4OtS2VCKoLhk2pP1bGc-Gl4_fw2KZqXXvQlatUDf3ReCYnnZg2KySuP9SZvtdFQ18znr2qO__2mddieWfzY0zR5bcAcdjdh9Vt1wk1YCupQM9iC4qLLehRbOpVpM_K5zzJiwNjR78iuiytG4JcZD8W99ihcxXqOvRDNHbs5--U7e-1Q9Bpsw_PNdfOyEVV9GKJXAhfDSMcm5bxMVUkUVrgYE43WJcqYrCyN0UYICgscRY7KlpKbnCPmiTMoM17WhdiBhW6vi7vAUoxzSzlTcuEkCltaY11ss0wrntGd9mDLD1H7Y1xqo12Nzv7fp09gudEsHtoPt4_3B7CShE4VXot4CAvD_giPCC8M9XH4Tb4ApAS3zg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Instrumentation+and+Measurement+Technology+Conference+%28I2MTC%29&rft.atitle=An+optimization-based+ensemble+EMD+for+classification+of+hyperspectral+images&rft.au=Yi+Shen&rft.au=Zhi+He&rft.au=Xiaoshuai+Li&rft.au=Qiang+Wang&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467346214&rft.issn=1091-5281&rft.spage=1045&rft.epage=1050&rft_id=info:doi/10.1109%2FI2MTC.2013.6555574&rft.externalDocID=6555574 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-5281&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-5281&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-5281&client=summon |