An optimization-based ensemble EMD for classification of hyperspectral images

Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternativ...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) pp. 1045 - 1050
Main Authors Yi Shen, Zhi He, Xiaoshuai Li, Qiang Wang, Miao Zhang, Yan Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2013
Subjects
Online AccessGet full text
ISBN9781467346214
1467346217
ISSN1091-5281
DOI10.1109/I2MTC.2013.6555574

Cover

Abstract Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternative methodology based on the ensemble empirical mode decomposition (EEMD) and utilize the versatile support vector machine (SVM) as a classifier. An optimization problem, which minimizes a smooth function subjected to inequality constraints associated with the extrema, is formulated in each iteration step to enhance the benefits of the EEMD. Additionally, the intrinsic mode functions (IMFs) extracted by the optimization-based EEMD are taken as features of the hyperspectral dataset and classified by the SVM. Simulations on the Washington D.C. mall hyperspectral dataset confirm the promising performance of our approach.
AbstractList Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be found in the literature but most of these methods rely on the linear/stationary assumptions. The aim of this paper is to propose an alternative methodology based on the ensemble empirical mode decomposition (EEMD) and utilize the versatile support vector machine (SVM) as a classifier. An optimization problem, which minimizes a smooth function subjected to inequality constraints associated with the extrema, is formulated in each iteration step to enhance the benefits of the EEMD. Additionally, the intrinsic mode functions (IMFs) extracted by the optimization-based EEMD are taken as features of the hyperspectral dataset and classified by the SVM. Simulations on the Washington D.C. mall hyperspectral dataset confirm the promising performance of our approach.
Author Miao Zhang
Yan Wang
Qiang Wang
Yi Shen
Zhi He
Xiaoshuai Li
Author_xml – sequence: 1
  surname: Yi Shen
  fullname: Yi Shen
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
– sequence: 2
  surname: Zhi He
  fullname: Zhi He
  email: hzhdhz@126.com
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
– sequence: 3
  surname: Xiaoshuai Li
  fullname: Xiaoshuai Li
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
– sequence: 4
  surname: Qiang Wang
  fullname: Qiang Wang
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
– sequence: 5
  surname: Miao Zhang
  fullname: Miao Zhang
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
– sequence: 6
  surname: Yan Wang
  fullname: Yan Wang
  organization: Sch. of Astronaut., Harbin Inst. of Technol., Harbin, China
BookMark eNo1UEtOwzAUNKJItCUXgI0vkPLs59jpsioFKjViU9aV4zyDUX6KsymnJ4Iym9FI85FmwWZt1xJj9wJWQsD6cS-L43YlQeBKZxOMumILobRBpSXiNUvWJv_XQs3YfEqJNJO5uGVJjF8AMBVpBDNnxablXT-GJnzbMXRtWtpIFac2UlPWxHfFE_fdwF1tYww-uF8X7zz_PPc0xJ7cONiah8Z-ULxjN97WkZILL9n78-64fU0Pby_77eaQBmGyMS2FywBspq00Cr0gWVLlpXbOWOtc6RBRSiDMSVdWgcuBKJfekTJg14hL9vDXG4jo1A_T-nA-Xd7AHxHvU_E
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/I2MTC.2013.6555574
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISBN 1467346233
9781467346238
EndPage 1050
ExternalDocumentID 6555574
Genre orig-research
GroupedDBID 29F
6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i175t-b1c500a56a2743f1e2bedf26cc7aaccbc333220e38e6da40c80ee82fce470a933
IEDL.DBID RIE
ISBN 9781467346214
1467346217
ISSN 1091-5281
IngestDate Wed Aug 27 04:13:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b1c500a56a2743f1e2bedf26cc7aaccbc333220e38e6da40c80ee82fce470a933
PageCount 6
ParticipantIDs ieee_primary_6555574
PublicationCentury 2000
PublicationDate 2013-May
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-May
PublicationDecade 2010
PublicationTitle 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
PublicationTitleAbbrev I2MTC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106307
ssj0006477
Score 1.6639103
Snippet Extraction of the essential features from massive bands is a key issue in hyperspectral images classification. Plenty of feature extraction techniques can be...
SourceID ieee
SourceType Publisher
StartPage 1045
SubjectTerms Accuracy
classification
Empirical mode decomposition
ensemble empirical mode decomposition (EEMD)
Feature extraction
hyperspectral images
Hyperspectral imaging
Roads
support vector machine (SVM)
Support vector machines
Title An optimization-based ensemble EMD for classification of hyperspectral images
URI https://ieeexplore.ieee.org/document/6555574
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgEhJc2MUuHziS4MSOnR5RaVWQgjhQqbcqtseigraoy4WvZ-ykLSAO5JREURYrmnnPfm-GkOtm7rgEh9EPhI6Qf7lIa6cjBn7NBiGFCiv4xZPs9sRjP-tvkJuVFwYAgvgMYr8b1vLtxCz8VNmtzHBTYpNsqlxWXq31fEriq0etyJb3UIbGKpgPkWzlSTB1ScWFRBC-rPVUH4ulm4Y1bx_S4qXlJV88rh_3o-9KSDudXVIsX7hSm7zFi7mOzeevWo7__aI9crQ2-NHnVeraJxswPiA732oTHpCtoA01s0NS3I3pBCPLqLZsRj7zWYr8F0b6HWi7uKcIfanxQNwrj8JVdOLoK5Lcyss5Ld_pcISxa3ZEep32S6sb1V0YoiFCi3mkE5MxVmayRALLXQKpButSaYwqS2O04RyDAgOeg7SlYCZnAHnqDAjFyibnx6QxnozhhNAMktxixhSMOwHcltZYl1iltGQK73RKDv0QDT6qQhuDenTO_j59TrbT0JvCqw8vSGM-XcAlIoS5vgq_xhf7VLSB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEXdrHjA0dSnNhx0iNiUVmCOBSptyq2xwJBW9TlwtczdtMWEAdySqIoixXNvGe_NwNwWs-dUOgo-qHUEfEvF2ntdMTRr9kQpMjCCn7xqBrP8q6VtubgbOqFQcQgPsOa3w1r-bZnRn6q7FyltGVyHhZTKWU6dmvNZlRiXz9qSre8izK0VqGMSHQrj4OtS2VCKoLhk2pP1bGc-Gl4_fw2KZqXXvQlatUDf3ReCYnnZg2KySuP9SZvtdFQ18znr2qO__2mddieWfzY0zR5bcAcdjdh9Vt1wk1YCupQM9iC4qLLehRbOpVpM_K5zzJiwNjR78iuiytG4JcZD8W99ihcxXqOvRDNHbs5--U7e-1Q9Bpsw_PNdfOyEVV9GKJXAhfDSMcm5bxMVUkUVrgYE43WJcqYrCyN0UYICgscRY7KlpKbnCPmiTMoM17WhdiBhW6vi7vAUoxzSzlTcuEkCltaY11ss0wrntGd9mDLD1H7Y1xqo12Nzv7fp09gudEsHtoPt4_3B7CShE4VXot4CAvD_giPCC8M9XH4Tb4ApAS3zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Instrumentation+and+Measurement+Technology+Conference+%28I2MTC%29&rft.atitle=An+optimization-based+ensemble+EMD+for+classification+of+hyperspectral+images&rft.au=Yi+Shen&rft.au=Zhi+He&rft.au=Xiaoshuai+Li&rft.au=Qiang+Wang&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467346214&rft.issn=1091-5281&rft.spage=1045&rft.epage=1050&rft_id=info:doi/10.1109%2FI2MTC.2013.6555574&rft.externalDocID=6555574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-5281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-5281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-5281&client=summon