Detecting Multiclass Emotions from Labeled Movie Scripts

Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dich...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Big Data and Smart Computing pp. 590 - 594
Main Authors Kim, Jaewoo, Ha, Yui, Kang, Seungche, Lim, Hongjun, Cha, Meeyoung
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2018
Subjects
Online AccessGet full text
ISSN2375-9356
DOI10.1109/BigComp.2018.00102

Cover

Abstract Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dichotomous affect scales and are subject to positivity bias. To infer diverse negative emotions, this paper presents a multiclass emotion classifier that focus on negative emotions. By utilizing a rich set of both content and meta information from a labeled movie transcript, we make a novel finding that while negative emotions are hardly distinguishable from each other based on standard approaches, our non-lexical meta features remarkably increase the recall performance by 52% to 113% among the negative emotions. Our model evaluated in cross-validation studies and via human tagging demonstrate an improved performance compared to traditional baselines. This research presents a pilot study, based on small yet rich dataset, which envisions AI systems that can understand the complex negative feelings to better assist human-robot interactions.
AbstractList Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dichotomous affect scales and are subject to positivity bias. To infer diverse negative emotions, this paper presents a multiclass emotion classifier that focus on negative emotions. By utilizing a rich set of both content and meta information from a labeled movie transcript, we make a novel finding that while negative emotions are hardly distinguishable from each other based on standard approaches, our non-lexical meta features remarkably increase the recall performance by 52% to 113% among the negative emotions. Our model evaluated in cross-validation studies and via human tagging demonstrate an improved performance compared to traditional baselines. This research presents a pilot study, based on small yet rich dataset, which envisions AI systems that can understand the complex negative feelings to better assist human-robot interactions.
Author Ha, Yui
Cha, Meeyoung
Kang, Seungche
Lim, Hongjun
Kim, Jaewoo
Author_xml – sequence: 1
  givenname: Jaewoo
  surname: Kim
  fullname: Kim, Jaewoo
– sequence: 2
  givenname: Yui
  surname: Ha
  fullname: Ha, Yui
– sequence: 3
  givenname: Seungche
  surname: Kang
  fullname: Kang, Seungche
– sequence: 4
  givenname: Hongjun
  surname: Lim
  fullname: Lim, Hongjun
– sequence: 5
  givenname: Meeyoung
  surname: Cha
  fullname: Cha, Meeyoung
BookMark eNotzMtKxDAYQOEoCs6M8wK6yQu05s89S63jBTq4UNdD2iRDpG1KEwXfXkFXZ_Nx1uhsSpNH6ApIDUDMzV08Nmmca0pA14QAoSdoDYJpySQ39BStKFOiMkzIC7TN-YP8IiMNVWSF9L0vvi9xOuL951BiP9ic8W5MJaYp47CkEbe284N3eJ--osev_RLnki_RebBD9tv_btD7w-6tearal8fn5ratIihRKusNC5oxcB2lXoYQOGUBHAgDnHSCa85EL5zoOuMUMS4Q4EY6Z1UAYg3boOu_b_TeH-Yljnb5PmgmFWjKfgD9-Uk_
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp.2018.00102
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538636492
9781538636497
EISSN 2375-9356
EndPage 594
ExternalDocumentID 8367182
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-ae93f8331db22e6fff423f1d159140b548435c5d5bb9d709df01496dda7f10a93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ae93f8331db22e6fff423f1d159140b548435c5d5bb9d709df01496dda7f10a93
PageCount 5
ParticipantIDs ieee_primary_8367182
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 1.6841414
Snippet Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning...
SourceID ieee
SourceType Publisher
StartPage 590
SubjectTerms Artificial intelligence
Classifier
Feature extraction
Labeled Movie Scripts
Machine learning
Motion pictures
Multiclass Emotion Classification
Reliability
Sentiment analysis
Task analysis
Training
Title Detecting Multiclass Emotions from Labeled Movie Scripts
URI https://ieeexplore.ieee.org/document/8367182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT56qtuKbPXg0bV6b3b2qLUWseLDQW9mnFKEVm176651J-hDx4C2EhIRddr5vHt8MwG1sDOK-EFHqrKGm2iFSQvMoD0J4xC-rLTmKo5diOM6fJnzSgLudFsZ7XxWf-S5dVrl8t7ArCpX1ZFagKUWDeyBkUWu19vEUVahUxFtdTKx697N3OlNUvkX1kglFTn5MUKkAZNCC0fbTdd3IR3dVmq5d_-rK-N9_O4LOXqrHXncgdAwNPz-B1nZWA9sc3TbIR0_pAnyGVZpbS6yZ9eshPktGKhP2rA2CkGOjBYIlvkr2ZNmB8aD_9jCMNlMTohlSgTLSXmVBZlniTJr6IoSAjCkkDnkLOlMGPRRkSJY7boxyIlYukJdUOKdFSGKtslNozhdzfwYs1TxxSAClivOcc-olLynnq1IuvYuzc2jTQkw_68YY080aXPx9-xIOaSvq-MUVNMuvlb9GRC_NTbWV32QBn84
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPOgJFYxv9-DRQl_b7V5VCColHiDhRrovQ0zASLn4651peRjjwVvTtGmzm53vm8c3A3DrK4W4L4QXGq2oqbbzpMi5FzshLOKXzjU5itkw6Y_j5wmf1OBuq4Wx1pbFZ7ZNl2Uu3yz0ikJlnTRK0JSiwd3jcRzzSq21i6jIRIbC3yhjfNm5n73RqaICLqqYDCh28mOGSgkhvQZkm49XlSPv7VWh2vrrV1_G__7dIbR2Yj32uoWhI6jZ-TE0NtMa2PrwNiF9tJQwwGdYqbrVxJtZtxrjs2SkM2GDXCEMGZYtEC7xVbIoyxaMe93RQ99bz03wZkgGCi-3MnJpFAVGhaFNnHPImVxgkLmgO6XQR0GOpLnhSkkjfGkc-UmJMblwgZ_L6ATq88XcngILcx4YpICp9HHBOXWTTynrK0OeWuNHZ9CkhZh-VK0xpus1OP_79g3s90fZYDp4Gr5cwAFtSxXNuIR68bmyV4jvhbout_Ub9VejGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Detecting+Multiclass+Emotions+from+Labeled+Movie+Scripts&rft.au=Kim%2C+Jaewoo&rft.au=Ha%2C+Yui&rft.au=Kang%2C+Seungche&rft.au=Lim%2C+Hongjun&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=590&rft.epage=594&rft_id=info:doi/10.1109%2FBigComp.2018.00102&rft.externalDocID=8367182