Detecting Multiclass Emotions from Labeled Movie Scripts
Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dich...
Saved in:
| Published in | International Conference on Big Data and Smart Computing pp. 590 - 594 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.01.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2375-9356 |
| DOI | 10.1109/BigComp.2018.00102 |
Cover
| Abstract | Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dichotomous affect scales and are subject to positivity bias. To infer diverse negative emotions, this paper presents a multiclass emotion classifier that focus on negative emotions. By utilizing a rich set of both content and meta information from a labeled movie transcript, we make a novel finding that while negative emotions are hardly distinguishable from each other based on standard approaches, our non-lexical meta features remarkably increase the recall performance by 52% to 113% among the negative emotions. Our model evaluated in cross-validation studies and via human tagging demonstrate an improved performance compared to traditional baselines. This research presents a pilot study, based on small yet rich dataset, which envisions AI systems that can understand the complex negative feelings to better assist human-robot interactions. |
|---|---|
| AbstractList | Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning of negative emotions that require delicate responses such as anger and sadness. Existing sentiment tools, however, are mostly limited to dichotomous affect scales and are subject to positivity bias. To infer diverse negative emotions, this paper presents a multiclass emotion classifier that focus on negative emotions. By utilizing a rich set of both content and meta information from a labeled movie transcript, we make a novel finding that while negative emotions are hardly distinguishable from each other based on standard approaches, our non-lexical meta features remarkably increase the recall performance by 52% to 113% among the negative emotions. Our model evaluated in cross-validation studies and via human tagging demonstrate an improved performance compared to traditional baselines. This research presents a pilot study, based on small yet rich dataset, which envisions AI systems that can understand the complex negative feelings to better assist human-robot interactions. |
| Author | Ha, Yui Cha, Meeyoung Kang, Seungche Lim, Hongjun Kim, Jaewoo |
| Author_xml | – sequence: 1 givenname: Jaewoo surname: Kim fullname: Kim, Jaewoo – sequence: 2 givenname: Yui surname: Ha fullname: Ha, Yui – sequence: 3 givenname: Seungche surname: Kang fullname: Kang, Seungche – sequence: 4 givenname: Hongjun surname: Lim fullname: Lim, Hongjun – sequence: 5 givenname: Meeyoung surname: Cha fullname: Cha, Meeyoung |
| BookMark | eNotzMtKxDAYQOEoCs6M8wK6yQu05s89S63jBTq4UNdD2iRDpG1KEwXfXkFXZ_Nx1uhsSpNH6ApIDUDMzV08Nmmca0pA14QAoSdoDYJpySQ39BStKFOiMkzIC7TN-YP8IiMNVWSF9L0vvi9xOuL951BiP9ic8W5MJaYp47CkEbe284N3eJ--osev_RLnki_RebBD9tv_btD7w-6tearal8fn5ratIihRKusNC5oxcB2lXoYQOGUBHAgDnHSCa85EL5zoOuMUMS4Q4EY6Z1UAYg3boOu_b_TeH-Yljnb5PmgmFWjKfgD9-Uk_ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp.2018.00102 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538636492 9781538636497 |
| EISSN | 2375-9356 |
| EndPage | 594 |
| ExternalDocumentID | 8367182 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-ae93f8331db22e6fff423f1d159140b548435c5d5bb9d709df01496dda7f10a93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:50:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-ae93f8331db22e6fff423f1d159140b548435c5d5bb9d709df01496dda7f10a93 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8367182 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 1.6841414 |
| Snippet | Detecting human emotions will likely become a key component in future artificial intelligence (AI) systems, where the challenge lies in the precise discerning... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 590 |
| SubjectTerms | Artificial intelligence Classifier Feature extraction Labeled Movie Scripts Machine learning Motion pictures Multiclass Emotion Classification Reliability Sentiment analysis Task analysis Training |
| Title | Detecting Multiclass Emotions from Labeled Movie Scripts |
| URI | https://ieeexplore.ieee.org/document/8367182 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT56qtuKbPXg0bV6b3b2qLUWseLDQW9mnFKEVm176651J-hDx4C2EhIRddr5vHt8MwG1sDOK-EFHqrKGm2iFSQvMoD0J4xC-rLTmKo5diOM6fJnzSgLudFsZ7XxWf-S5dVrl8t7ArCpX1ZFagKUWDeyBkUWu19vEUVahUxFtdTKx697N3OlNUvkX1kglFTn5MUKkAZNCC0fbTdd3IR3dVmq5d_-rK-N9_O4LOXqrHXncgdAwNPz-B1nZWA9sc3TbIR0_pAnyGVZpbS6yZ9eshPktGKhP2rA2CkGOjBYIlvkr2ZNmB8aD_9jCMNlMTohlSgTLSXmVBZlniTJr6IoSAjCkkDnkLOlMGPRRkSJY7boxyIlYukJdUOKdFSGKtslNozhdzfwYs1TxxSAClivOcc-olLynnq1IuvYuzc2jTQkw_68YY080aXPx9-xIOaSvq-MUVNMuvlb9GRC_NTbWV32QBn84 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPOgJFYxv9-DRQl_b7V5VCColHiDhRrovQ0zASLn4651peRjjwVvTtGmzm53vm8c3A3DrK4W4L4QXGq2oqbbzpMi5FzshLOKXzjU5itkw6Y_j5wmf1OBuq4Wx1pbFZ7ZNl2Uu3yz0ikJlnTRK0JSiwd3jcRzzSq21i6jIRIbC3yhjfNm5n73RqaICLqqYDCh28mOGSgkhvQZkm49XlSPv7VWh2vrrV1_G__7dIbR2Yj32uoWhI6jZ-TE0NtMa2PrwNiF9tJQwwGdYqbrVxJtZtxrjs2SkM2GDXCEMGZYtEC7xVbIoyxaMe93RQ99bz03wZkgGCi-3MnJpFAVGhaFNnHPImVxgkLmgO6XQR0GOpLnhSkkjfGkc-UmJMblwgZ_L6ATq88XcngILcx4YpICp9HHBOXWTTynrK0OeWuNHZ9CkhZh-VK0xpus1OP_79g3s90fZYDp4Gr5cwAFtSxXNuIR68bmyV4jvhbout_Ub9VejGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Detecting+Multiclass+Emotions+from+Labeled+Movie+Scripts&rft.au=Kim%2C+Jaewoo&rft.au=Ha%2C+Yui&rft.au=Kang%2C+Seungche&rft.au=Lim%2C+Hongjun&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=590&rft.epage=594&rft_id=info:doi/10.1109%2FBigComp.2018.00102&rft.externalDocID=8367182 |