Functional parcellation of the hippocampus by clustering resting state fMRI signals
In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the...
Saved in:
| Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 5 - 8 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.04.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-7928 |
| DOI | 10.1109/ISBI.2014.6867795 |
Cover
| Abstract | In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the graph and connecting each pair of voxels with an edge weighted by a similarity measure between their functional signals. A geometric parcellation result of the hippocampus is adopted as prior information and a spatial consistent constraint is adopted as a regularization term to achieve spatially contiguous clustering. The graph partition problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated based on resting state fMRI data of 28 subjects for the hippocampus parcellation with three subregions. The experiment results have demonstrated that the proposed method could parcellate the hippocampus into its head, body and tail parts. The distinctive functional and structural connectivity patterns of these subregions, derived from resting state fMRI and dMRI data respectively, have further demonstrated the validity of the parcellation results. |
|---|---|
| AbstractList | In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the graph and connecting each pair of voxels with an edge weighted by a similarity measure between their functional signals. A geometric parcellation result of the hippocampus is adopted as prior information and a spatial consistent constraint is adopted as a regularization term to achieve spatially contiguous clustering. The graph partition problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated based on resting state fMRI data of 28 subjects for the hippocampus parcellation with three subregions. The experiment results have demonstrated that the proposed method could parcellate the hippocampus into its head, body and tail parts. The distinctive functional and structural connectivity patterns of these subregions, derived from resting state fMRI and dMRI data respectively, have further demonstrated the validity of the parcellation results. |
| Author | Yong Fan Hewei Cheng |
| Author_xml | – sequence: 1 surname: Hewei Cheng fullname: Hewei Cheng email: hwcheng@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China – sequence: 2 surname: Yong Fan fullname: Yong Fan email: yfan@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China |
| BookMark | eNotkE1OwzAUhI1UJNrSAyA2vkCCX-z4ZwkVhUhFSBTWlZs8t0ZpEsXOorcnEZ3NpxmNZjELMmvaBgl5AJYCMPNU7F6KNGMgUqmlUia_IQsQUnEwEsyMzMGIPFEm03dkFcIvG6WE4EzMyW4zNGX0bWNr2tm-xLq2k6Wto_GE9OS7ri3tuRsCPVxoWQ8hYu-bI-0xxIkh2ojUfXwVNPjjuBPuya0bgasrl-Rn8_q9fk-2n2_F-nmbeFB5TKxmmYYMDQiuHM-rjLtKOz3FlcNcO2lLCdpU4CwwB0648iDUVK5QMr4kj_-7HhH3Xe_Ptr_srx_wP_54Uvw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI.2014.6867795 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1467319619 9781467319614 |
| EndPage | 8 |
| ExternalDocumentID | 6867795 |
| Genre | orig-research |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i175t-a802812e91437f35d23fd8f88028dfe58f6ac6189d1fa10f1f4fcb4737f3de603 |
| IEDL.DBID | RIE |
| ISSN | 1945-7928 |
| IngestDate | Wed Aug 27 04:16:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-a802812e91437f35d23fd8f88028dfe58f6ac6189d1fa10f1f4fcb4737f3de603 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6867795 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-April |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-April |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 1.9661267 |
| Snippet | In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5 |
| SubjectTerms | Algorithm design and analysis Clustering algorithms functional connectivity pattern Hippocampus Kernel Magnetic resonance imaging parcellation Partitioning algorithms Probabilistic logic semi-supervised clustering structural connectivity pattern |
| Title | Functional parcellation of the hippocampus by clustering resting state fMRI signals |
| URI | https://ieeexplore.ieee.org/document/6867795 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21PcGFpUXs8oEjSeOszhVE1SIVIUql3io7tkUFtBEkB_h6ZpJQFnHgkkSWE1keR-9pljcAZ1wiSmueOaSt5YRRKh3F8YJUQSWKE4RTofD4Jh5Ow-tZNGvB-boWxhhTJZ8Zlx6rWL5eZSW5yvoxia-lURvaiYjrWq21PwWhMAy8OogckgqjL5ogJvfS_mhyMaI8rtBtvvGjmUqFJYMtGH-uok4heXTLQrnZ-y-Bxv8ucxt6X1V77HaNRzvQMstd2PwmONiFyQBhrPb-sVxWXvvKMmxlGTJB9rDIcwS357x8ZeqNZU8l6Sjgq4xaeNC9KkBidnw3YpT6gYe3B9PB1f3l0GnaKjgL5AqFIwVyCu6bFKlSYoNI-4HVwgoa1tZEwsYyi7lINbeSe5bb0GYqTGiyNrEX7EFnuVqafWBEToRJUuUnOMF6KtGWKxtr_Jmln8oD6NL2zPNaOWPe7Mzh38NHsEEmqvNijqFTvJTmBCG_UKeVrT8At0Cq1g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLAWx4wNHksaJs11BVC00FaKt1Ftlx7aogDaC5ABfjycJZREHLklkOZHlcfSeZnkDcE65QWlJUwu1tSzmx9wS1FwMVRChoAjhWCicDILumN1M_EkDLpa1MEqpMvlM2fhYxvLlIi3QVdYOUHwt9ldg1WeM-VW11tKjYsCQeU4VRmaow-hGdRiTOnG7N7zsYSYXs-uv_GinUqJJZxOSz3VUSSSPdpELO33_JdH434Vuwe5X3R65WyLSNjTUfAc2vkkOtmDYMUBW-f9Ixku_fWkbstDEcEHyMMsyA2_PWfFKxBtJnwpUUjCvEmzigfeyBIno5L5HMPnDHN9dGHeuR1ddq26sYM0MW8gtHhlWQV0VG7IUas-XrqdlpCMcllr5kQ54GtAollRz6miqmU4FC3GyVIHj7UFzvpirfSBITyIVxsINzQTtiFBqKnQgze_M3ZgfQAu3Z5pV2hnTemcO_x4-g7XuKOlP-73B7RGso7mqLJljaOYvhToxBCAXp6XdPwDYqK4j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Functional+parcellation+of+the+hippocampus+by+clustering+resting+state+fMRI+signals&rft.au=Hewei+Cheng&rft.au=Yong+Fan&rft.date=2014-04-01&rft.pub=IEEE&rft.issn=1945-7928&rft.spage=5&rft.epage=8&rft_id=info:doi/10.1109%2FISBI.2014.6867795&rft.externalDocID=6867795 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon |