Functional parcellation of the hippocampus by clustering resting state fMRI signals

In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 5 - 8
Main Authors Hewei Cheng, Yong Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2014
Subjects
Online AccessGet full text
ISSN1945-7928
DOI10.1109/ISBI.2014.6867795

Cover

Abstract In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the graph and connecting each pair of voxels with an edge weighted by a similarity measure between their functional signals. A geometric parcellation result of the hippocampus is adopted as prior information and a spatial consistent constraint is adopted as a regularization term to achieve spatially contiguous clustering. The graph partition problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated based on resting state fMRI data of 28 subjects for the hippocampus parcellation with three subregions. The experiment results have demonstrated that the proposed method could parcellate the hippocampus into its head, body and tail parts. The distinctive functional and structural connectivity patterns of these subregions, derived from resting state fMRI and dMRI data respectively, have further demonstrated the validity of the parcellation results.
AbstractList In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented as a graph partition problem by modeling each voxel as one node of the graph and connecting each pair of voxels with an edge weighted by a similarity measure between their functional signals. A geometric parcellation result of the hippocampus is adopted as prior information and a spatial consistent constraint is adopted as a regularization term to achieve spatially contiguous clustering. The graph partition problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated based on resting state fMRI data of 28 subjects for the hippocampus parcellation with three subregions. The experiment results have demonstrated that the proposed method could parcellate the hippocampus into its head, body and tail parts. The distinctive functional and structural connectivity patterns of these subregions, derived from resting state fMRI and dMRI data respectively, have further demonstrated the validity of the parcellation results.
Author Yong Fan
Hewei Cheng
Author_xml – sequence: 1
  surname: Hewei Cheng
  fullname: Hewei Cheng
  email: hwcheng@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 2
  surname: Yong Fan
  fullname: Yong Fan
  email: yfan@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
BookMark eNotkE1OwzAUhI1UJNrSAyA2vkCCX-z4ZwkVhUhFSBTWlZs8t0ZpEsXOorcnEZ3NpxmNZjELMmvaBgl5AJYCMPNU7F6KNGMgUqmlUia_IQsQUnEwEsyMzMGIPFEm03dkFcIvG6WE4EzMyW4zNGX0bWNr2tm-xLq2k6Wto_GE9OS7ri3tuRsCPVxoWQ8hYu-bI-0xxIkh2ojUfXwVNPjjuBPuya0bgasrl-Rn8_q9fk-2n2_F-nmbeFB5TKxmmYYMDQiuHM-rjLtKOz3FlcNcO2lLCdpU4CwwB0648iDUVK5QMr4kj_-7HhH3Xe_Ptr_srx_wP_54Uvw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2014.6867795
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467319619
9781467319614
EndPage 8
ExternalDocumentID 6867795
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-a802812e91437f35d23fd8f88028dfe58f6ac6189d1fa10f1f4fcb4737f3de603
IEDL.DBID RIE
ISSN 1945-7928
IngestDate Wed Aug 27 04:16:05 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a802812e91437f35d23fd8f88028dfe58f6ac6189d1fa10f1f4fcb4737f3de603
PageCount 4
ParticipantIDs ieee_primary_6867795
PublicationCentury 2000
PublicationDate 2014-April
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-April
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 1.9661267
Snippet In this study, we propose a semi-supervised clustering method for parcellating the hippocampus into functionally homogeneous subregions based on resting state...
SourceID ieee
SourceType Publisher
StartPage 5
SubjectTerms Algorithm design and analysis
Clustering algorithms
functional connectivity pattern
Hippocampus
Kernel
Magnetic resonance imaging
parcellation
Partitioning algorithms
Probabilistic logic
semi-supervised clustering
structural connectivity pattern
Title Functional parcellation of the hippocampus by clustering resting state fMRI signals
URI https://ieeexplore.ieee.org/document/6867795
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21PcGFpUXs8oEjSeOszhVE1SIVIUql3io7tkUFtBEkB_h6ZpJQFnHgkkSWE1keR-9pljcAZ1wiSmueOaSt5YRRKh3F8YJUQSWKE4RTofD4Jh5Ow-tZNGvB-boWxhhTJZ8Zlx6rWL5eZSW5yvoxia-lURvaiYjrWq21PwWhMAy8OogckgqjL5ogJvfS_mhyMaI8rtBtvvGjmUqFJYMtGH-uok4heXTLQrnZ-y-Bxv8ucxt6X1V77HaNRzvQMstd2PwmONiFyQBhrPb-sVxWXvvKMmxlGTJB9rDIcwS357x8ZeqNZU8l6Sjgq4xaeNC9KkBidnw3YpT6gYe3B9PB1f3l0GnaKjgL5AqFIwVyCu6bFKlSYoNI-4HVwgoa1tZEwsYyi7lINbeSe5bb0GYqTGiyNrEX7EFnuVqafWBEToRJUuUnOMF6KtGWKxtr_Jmln8oD6NL2zPNaOWPe7Mzh38NHsEEmqvNijqFTvJTmBCG_UKeVrT8At0Cq1g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLAWx4wNHksaJs11BVC00FaKt1Ftlx7aogDaC5ABfjycJZREHLklkOZHlcfSeZnkDcE65QWlJUwu1tSzmx9wS1FwMVRChoAjhWCicDILumN1M_EkDLpa1MEqpMvlM2fhYxvLlIi3QVdYOUHwt9ldg1WeM-VW11tKjYsCQeU4VRmaow-hGdRiTOnG7N7zsYSYXs-uv_GinUqJJZxOSz3VUSSSPdpELO33_JdH434Vuwe5X3R65WyLSNjTUfAc2vkkOtmDYMUBW-f9Ixku_fWkbstDEcEHyMMsyA2_PWfFKxBtJnwpUUjCvEmzigfeyBIno5L5HMPnDHN9dGHeuR1ddq26sYM0MW8gtHhlWQV0VG7IUas-XrqdlpCMcllr5kQ54GtAollRz6miqmU4FC3GyVIHj7UFzvpirfSBITyIVxsINzQTtiFBqKnQgze_M3ZgfQAu3Z5pV2hnTemcO_x4-g7XuKOlP-73B7RGso7mqLJljaOYvhToxBCAXp6XdPwDYqK4j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Functional+parcellation+of+the+hippocampus+by+clustering+resting+state+fMRI+signals&rft.au=Hewei+Cheng&rft.au=Yong+Fan&rft.date=2014-04-01&rft.pub=IEEE&rft.issn=1945-7928&rft.spage=5&rft.epage=8&rft_id=info:doi/10.1109%2FISBI.2014.6867795&rft.externalDocID=6867795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon