Improvement of a face detection system by evolutionary multi-objective optimization

This paper presents the application of evolutionary multi-objective optimization (EMO) to the improvement of a face detection system. The face detection system is based on the boosted cascade system, and analyzes image positions on different scales in a three-step-procedure. Based on threshold setti...

Full description

Saved in:
Bibliographic Details
Published inFifth International Conference on Hybrid Intelligent Systems : HIS 2005 : [proceedings] : 6-9 November, 2005, Rio de Janerio, Brazil p. 6 pp.
Main Authors Verschae, R., del Solar, J.R., Koppen, M., Garcia, R.V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN9780769524573
0769524575
DOI10.1109/ICHIS.2005.63

Cover

Abstract This paper presents the application of evolutionary multi-objective optimization (EMO) to the improvement of a face detection system. The face detection system is based on the boosted cascade system, and analyzes image positions on different scales in a three-step-procedure. Based on threshold settings, the algorithm decides whether to continue with the test on a finer scale at the current position. Thus, the thresholds for all scales and stages have a major influence on the performance of the system, and become the subject of the evolutionary optimization according to three objectives: low false positive rate, high detection rate and low processing time. The used EMO is the extension of the standard genetic algorithm to the EMO case by using fuzzy Pareto dominance as a meta-heuristic. The application of this EMO to the face detection system is explored and discussed using images from a standard face detection benchmark dataset. From the runtime analysis of the EMO it can be concluded that the algorithm reliably approaches the Pareto set of the problem.
AbstractList This paper presents the application of evolutionary multi-objective optimization (EMO) to the improvement of a face detection system. The face detection system is based on the boosted cascade system, and analyzes image positions on different scales in a three-step-procedure. Based on threshold settings, the algorithm decides whether to continue with the test on a finer scale at the current position. Thus, the thresholds for all scales and stages have a major influence on the performance of the system, and become the subject of the evolutionary optimization according to three objectives: low false positive rate, high detection rate and low processing time. The used EMO is the extension of the standard genetic algorithm to the EMO case by using fuzzy Pareto dominance as a meta-heuristic. The application of this EMO to the face detection system is explored and discussed using images from a standard face detection benchmark dataset. From the runtime analysis of the EMO it can be concluded that the algorithm reliably approaches the Pareto set of the problem.
Author del Solar, J.R.
Verschae, R.
Koppen, M.
Garcia, R.V.
Author_xml – sequence: 1
  givenname: R.
  surname: Verschae
  fullname: Verschae, R.
  organization: Dept. Electr. Eng., Univ. de Chile, Santiago, Chile
– sequence: 2
  givenname: J.R.
  surname: del Solar
  fullname: del Solar, J.R.
  organization: Dept. Electr. Eng., Univ. de Chile, Santiago, Chile
– sequence: 3
  givenname: M.
  surname: Koppen
  fullname: Koppen, M.
– sequence: 4
  givenname: R.V.
  surname: Garcia
  fullname: Garcia, R.V.
BookMark eNotjk9Lw0AUxBdUUGuPnrzsF0jdf29fcpSgNlDwUD2X3fQFtiTZkGwL9dPbYOcyML9hmEd228eeGHuWYiWlKF6rcl1tV0oIWFl9w5YF5gJtAcoA6nu2nKaDuEgXIEE9sG3VDWM8UUd94rHhjjeuJr6nRHUKsefTeUrUcX_mdIrtcc7ceObdsU0hi_4w107E45BCF37dzJ_YXePaiZZXX7Cfj_fvcp1tvj6r8m2TBYmQMmfrxpt9roUHYRSiAOfQknWmsbnKwTvYIwjMtVSKbO29EUWD5AxIAq8X7OV_NxDRbhhDd3m2k5AjotF_3kBRQQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICHIS.2005.63
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1587774
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-a6cfb4d830b50427705aa76e6a4f68285ba5d750783122e6cbb409f7ea451e5b3
IEDL.DBID RIE
ISBN 9780769524573
0769524575
IngestDate Wed Aug 27 02:04:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a6cfb4d830b50427705aa76e6a4f68285ba5d750783122e6cbb409f7ea451e5b3
ParticipantIDs ieee_primary_1587774
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle Fifth International Conference on Hybrid Intelligent Systems : HIS 2005 : [proceedings] : 6-9 November, 2005, Rio de Janerio, Brazil
PublicationTitleAbbrev ICHIS
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395152
Score 1.3659456
Snippet This paper presents the application of evolutionary multi-objective optimization (EMO) to the improvement of a face detection system. The face detection system...
SourceID ieee
SourceType Publisher
StartPage 6 pp.
SubjectTerms Algorithm design and analysis
Error analysis
Face detection
Genetic algorithms
Image analysis
Pareto analysis
Pareto optimization
Runtime
Security
Testing
Title Improvement of a face detection system by evolutionary multi-objective optimization
URI https://ieeexplore.ieee.org/document/1587774
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB3arlyptOKbWbh02iTzStfF0goVoRa6K_O4ARUTkVSoX-880lbEhbu5QxbDJMw9c3LPuQjdZFJIy4wkHJglDv8zok3mwkQBtZDSQnjt8OxBTBbsfsmXLXS708IAQCg-g74fhn_5tjJrT5UNUu7d61gbtWUuolZrx6ck1GEF3tzMhzxjDoc0BjvbmO49NgfT0WQ6j5SKdwD90VklJJbxIZptlxTrSV7761r3zdcvt8b_rvkI9fYSPvy4S07HqAVlF80jhRAYQVwVWOFCuecs1KEgq8TR1xnrDYbP5ptUHxscqg5JpV_i6Ygrd868NQLOHlqM755GE9J0VSDPDirURAlTaGZzmmjuG23IhCslBQjFCuH97LTi1uEImdM0y0AYrd0dsJCgGE-Ba3qCOmVVwinCmZVaDb321WiWGqkd2qQmZw5UUGr58Ax1_Yas3qNxxqrZi_O_py_QQfBFDfzGJerUH2u4chm_1tfhVX8DMw2opA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjhbb7BWciKQrEBEi4kf2YJmpsDSkm-Ovd3RYwxoO3nU0Pm22z8_Z13huE7mLBhaFaBAyoCSz-p4HSsQ1DCcRARFLutMOjMU9m9HHO5jV0v9XCAIAvPoOWG_p_-SbXK0eVtSPm3OvoHtpnlFJWqrW2jEpILFpg1d28y2JqkUhlsbOJyc5lsz3oJYNJSao4D9AfvVV8aukfodFmUWVFyVtrVaiW_vrl1_jfVR-j5k7Eh5-36ekE1SBroElJInhOEOcpljiV9jkDhS_JynDp7IzVGsNn9VXK5Rr7usMgV6_l-Yhze9K8VxLOJpr1H6a9JKj6KgQvFiwUgeQ6VdR0SKiYa7UhQial4MAlTblztFOSGYskRIdEcQxcK2VvgakASVkETJFTVM_yDM4Qjo1QsuvUr1rRSAtl8SbRHWphBSGGdc9Rw23I4qO0zlhUe3Hx9_QtOkimo-FiOBg_XaJD75Lq2Y4rVC-WK7i2-b9QN_61fwM7GKvx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Fifth+International+Conference+on+Hybrid+Intelligent+Systems+%3A+HIS+2005+%3A+%5Bproceedings%5D+%3A+6-9+November%2C+2005%2C+Rio+de+Janerio%2C+Brazil&rft.atitle=Improvement+of+a+face+detection+system+by+evolutionary+multi-objective+optimization&rft.au=Verschae%2C+R.&rft.au=del+Solar%2C+J.R.&rft.au=Koppen%2C+M.&rft.au=Garcia%2C+R.V.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769524573&rft.spage=6+pp.&rft_id=info:doi/10.1109%2FICHIS.2005.63&rft.externalDocID=1587774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769524573/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769524573/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769524573/sc.gif&client=summon&freeimage=true