BB-Tree: A Main-Memory Index Structure for Multidimensional Range Queries
We present the BB-Tree, a fast and space-efficient index structure for processing multidimensional workloads in main memory. It uses a k-ary search tree for pruning and searching while keeping all data in leaf nodes. It linearizes the inner search tree and manages it in a cache-optimized array, with...
Saved in:
| Published in | Data engineering pp. 1566 - 1569 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2375-026X |
| DOI | 10.1109/ICDE.2019.00143 |
Cover
| Abstract | We present the BB-Tree, a fast and space-efficient index structure for processing multidimensional workloads in main memory. It uses a k-ary search tree for pruning and searching while keeping all data in leaf nodes. It linearizes the inner search tree and manages it in a cache-optimized array, with occasional re-organizations when data changes. To reduce the frequency of re-organizations, the BB-Tree introduces a novel architecture for leaf nodes, called bubble buckets, which automatically morphs between different representations based on their fill degree and are thus able to buffer large numbers of insertions in-place. We compare the BB-Tree to scanning, main-memory variants of the R^*-tree, the kd-tree, and the VA-file, and the PH-tree using workloads over real and synthetic data. The BB-Tree is the fastest index for range queries up to a selectivity of 20%, and achieves an exact-match query performance similar to that of the best point access method, and is the most space-efficient index structure. |
|---|---|
| AbstractList | We present the BB-Tree, a fast and space-efficient index structure for processing multidimensional workloads in main memory. It uses a k-ary search tree for pruning and searching while keeping all data in leaf nodes. It linearizes the inner search tree and manages it in a cache-optimized array, with occasional re-organizations when data changes. To reduce the frequency of re-organizations, the BB-Tree introduces a novel architecture for leaf nodes, called bubble buckets, which automatically morphs between different representations based on their fill degree and are thus able to buffer large numbers of insertions in-place. We compare the BB-Tree to scanning, main-memory variants of the R^*-tree, the kd-tree, and the VA-file, and the PH-tree using workloads over real and synthetic data. The BB-Tree is the fastest index for range queries up to a selectivity of 20%, and achieves an exact-match query performance similar to that of the best point access method, and is the most space-efficient index structure. |
| Author | Schafer, Patrick Leser, Ulf Sprenger, Stefan |
| Author_xml | – sequence: 1 givenname: Stefan surname: Sprenger fullname: Sprenger, Stefan organization: Humboldt-University Berlin – sequence: 2 givenname: Patrick surname: Schafer fullname: Schafer, Patrick organization: Humboldt-University Berlin – sequence: 3 givenname: Ulf surname: Leser fullname: Leser, Ulf organization: Humboldt-University Berlin |
| BookMark | eNotjE1LwzAYgKMouM2dPXjJH-jMm48m8bYvtbAi6gRvI93eSKRNJW3B_XsH-lweeA7PmFzENiIhN8BmAMzeFcvVesYZ2BljIMUZGYMSJtdSS35ORlxolTGef1yRadd9sRNWAig2IsVikW0T4j2d09KFmJXYtOlIi3jAH_rWp2HfDwmpbxMth7oPh9Bg7EIbXU1fXfxE-jJgCthdk0vv6g6n_56Q94f1dvmUbZ4fi-V8kwXQqs-cYgjemz0azZkFz5VELwzH6uAt6txqjsIZMIpz1Oj3p1RJ1NbkFVO5mJDbv29AxN13Co1Lx53RAqRk4hecVU0c |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICDE.2019.00143 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538674742 9781538674741 |
| EISSN | 2375-026X |
| EndPage | 1569 |
| ExternalDocumentID | 8731440 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-a50e1ff8ce872091f254ef382ebdf9e76972e3a818522e7efc769b4e7986b0563 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 06:01:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-a50e1ff8ce872091f254ef382ebdf9e76972e3a818522e7efc769b4e7986b0563 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8731440 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-April |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
| PublicationDecade | 2010 |
| PublicationTitle | Data engineering |
| PublicationTitleAbbrev | ICDE |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000941150 |
| Score | 2.1350684 |
| Snippet | We present the BB-Tree, a fast and space-efficient index structure for processing multidimensional workloads in main memory. It uses a k-ary search tree for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1566 |
| SubjectTerms | Arrays Buildings Computer science Index Structure Indexes Layout Main-Memory Multidimensional Range Queries Search problems Vegetation |
| Title | BB-Tree: A Main-Memory Index Structure for Multidimensional Range Queries |
| URI | https://ieeexplore.ieee.org/document/8731440 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT8JAEMYnwMkTKhjf2YNHF9pt6W69CULApMYHJNxIH7MJMSkG6UH_ene2BY3x4K3ZS9vdbGZm9_t-A3AlREyUOsG1nynum5jBVYIhl6Hja1NuyMwiNqKHYDzz7-e9eQ2ud14YRLTiM-zQo73Lz1ZpQUdlXSU9uousQ12qoPRq7c5TTJlCyU1F73GdsDsZ3A1Ju2WBlOTK-dE-xUaPUROi7XtL0chrp9gknfTzF5Lxvx-2D-1vnx573EWgA6hhfgjNbaMGVu3bFkz6fT5dI96wWxbFy5xHpK_9YBNCJbIXi5At1shMAsusIzcj5n_J62DPZD9gTwURkd_bMBsNp4Mxr3oo8KVJDDY87jnoaq1SVFKY3ECbghC1pwQmmQ5RBqEU6MUUtoVAiTo1Q4mPMlRBYpIj7wga-SrHY2CZLScDF5Xj-1J4iTa1iRtLJ5Sxp6Q6gRbNzOKtxGQsqkk5_Xv4DPZobUoRzDk0zK_ihYnvm-TSLuwXs1-i-A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMdfEA96QgXjb3vwaGF03dp5E4QwZcQfkHAjG3tNiMkwyA7619t2gMZ48Lb0sq1N895rv9_PA7hiLDaUOkYVTyXlOmZQmWBAReBwpcsNkVrERjTweyN-P_bGJbjeeGEQ0YrPsG4e7V1-Op_m5qisIYVr7iK3YNvjnHuFW2tzoqILFZPerPg9TSdohO27jlFvWSSl8eX8aKBi40e3AtH6zYVs5LWeL5P69PMXlPG_n7YHtW-nHnncxKB9KGF2AJV1qway2rlVCFstOlwg3pBbEsWzjEZGYftBQgNLJC8WIpsvkOgUllhPbmqo_wWxgzwbAwJ5yg0T-b0Go25n2O7RVRcFOtOpwZLGnoNNpeQUpWA6O1C6JETlSoZJqgIUfiAYurEJ3IyhQDXVQwlHEUg_0emRewjlbJ7hEZDUFpR-E6XDuWBuonR10oyFE4jYlUIeQ9XMzOStAGVMVpNy8vfwJez0hlF_0g8HD6ewa9apkMScQVn_Np7raL9MLuwifwFuHqZF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=BB-Tree%3A+A+Main-Memory+Index+Structure+for+Multidimensional+Range+Queries&rft.au=Sprenger%2C+Stefan&rft.au=Schafer%2C+Patrick&rft.au=Leser%2C+Ulf&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=1566&rft.epage=1569&rft_id=info:doi/10.1109%2FICDE.2019.00143&rft.externalDocID=8731440 |