Visual query compression with locality preserving projection on Grassmann manifold

For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compress...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Image Processing (ICIP) pp. 3026 - 3030
Main Authors Zhang, Zhaobin, Li, Li, Li, Zhu, Li, Houqiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2017.8296838

Cover

Abstract For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compression, that utilizes subspaces that optimized for preserving key point feature matching properties than the reconstruction performance, and allows for a set of optimal subspaces on Grassmann manifold that can better adapt to the local manifold geometry. The simulation demonstrates that such scheme has very low overhead in signaling subspaces, and has very much improved performance on the repeatability of the keypoint matching subject to bit rate constraints.
AbstractList For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compression, that utilizes subspaces that optimized for preserving key point feature matching properties than the reconstruction performance, and allows for a set of optimal subspaces on Grassmann manifold that can better adapt to the local manifold geometry. The simulation demonstrates that such scheme has very low overhead in signaling subspaces, and has very much improved performance on the repeatability of the keypoint matching subject to bit rate constraints.
Author Li, Li
Zhang, Zhaobin
Li, Zhu
Li, Houqiang
Author_xml – sequence: 1
  givenname: Zhaobin
  surname: Zhang
  fullname: Zhang, Zhaobin
  organization: University of Missouri - Kansas City
– sequence: 2
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: University of Missouri - Kansas City
– sequence: 3
  givenname: Zhu
  surname: Li
  fullname: Li, Zhu
  organization: University of Missouri - Kansas City
– sequence: 4
  givenname: Houqiang
  surname: Li
  fullname: Li, Houqiang
  organization: University of Science and Technology of China
BookMark eNotUNtKw0AUXEXBtvYDxJf8QOLekpx9lKA1UFBEfS2b9axuSTZ1N7Xk702xcJgZhmEYzpxc-N4jITeMZoxRdVdX9UvGKSsz4KoAAWdkqUpgOVWUszKHczLjAlgKuVRXZB7jltIpL9iMvH64uNdt8rPHMCam73YBY3S9Tw5u-E7a3ujWDWNytDH8Ov81yX6LZjhmplsFHWOnvU8mcLZvP6_JpdVtxOWJF-T98eGtekrXz6u6ul-nbto0pFo2mhvJixLBFFIBGGvBCmqUgkKgsbmW1lC0giNTuqC24dagzHPaQGnEgtz-9zpE3OyC63QYN6cXiD9S7FQW
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296838
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 3030
ExternalDocumentID 8296838
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-a4ba2c4267e8c64988cff8f30c99863ecf5a4fc0ef32e19a60fb2fce4550b87c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a4ba2c4267e8c64988cff8f30c99863ecf5a4fc0ef32e19a60fb2fce4550b87c3
PageCount 5
ParticipantIDs ieee_primary_8296838
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.0254264
Snippet For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of...
SourceID ieee
SourceType Publisher
StartPage 3026
SubjectTerms Binary trees
Bit rate
Compression
Grassmann manifold
Indexing
LPP
Manifolds
Principal component analysis
Transforms
Visual identification
Visual query
Visualization
Title Visual query compression with locality preserving projection on Grassmann manifold
URI https://ieeexplore.ieee.org/document/8296838
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycGj7dpma9PzcG7CZIiT3UaSvshwdrK1B_3rfWlrRfEg9FBCKCEh_b738n0vAFcYWVSPEwpLlHGI_yeOIqR3wjii_lz6QliD8_Q-HM_7d4vBogHXtRcGEQvxGbr2tTjLTzY6t6myngjiUHDRhGYkwtKrVedTiEYQFfHqYMvWkalOMX0v7k2Gk5kVckVu9ZEft6kUYDJqw_RrGKWG5MXNM-Xqj18VGv87zn3oftv22KwGpANoYHoI7YpnsmoX7zrw8LTa5XLNCBK278yKyksxbMpsVpYV8EbknNlm-ytJn1mVsLF96LndEuV-lWnKbPUMs1knXZiPbh6HY6e6W8FZEWHIHNlXMtAEzxEKHfZjIbQxwnBPU_wVctRmIPtGe2h4gH4sQ8-owGi0JmglIs2PoJVuUjwGFhPiY8Ilx4hiSyGF8NHTgQr0QBG9CU6gY6do-VaWz1hWs3P6d_MZ7NllKmVc59DKtjleEO5n6rJY8E8_-a5i
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjm2Pdj-5MRFAgxIDhRtquNUQcBraD_vW-bnNG48Fkh6VplqZN933v9fteAa5UaFA9ijEsEdpC_h9bApHeCqIQ-1PeZswYnIejoDf17mf-rAbXlRdGKZWLz5RtXvOz_HglM5Mqu2FuFDDKtmDb9zzPL9xaVUYFiQSSEacKt0wlmfIcs-1EN_1Of2ykXKFdfubHfSo5nHQbMPwaSKEiebGzVNjy41eNxv-OdA9a38Y9Mq4gaR9qKjmARsk0SbmPN014fFpsMr4kCArrd2Jk5YUcNiEmL0tygEN6Tkyz-Zkkz6RM2Zg--NytkXS_8iQhpn6GXi3jFky7t5NOzypvV7AWSBlSi3uCuxIBOlRMBl7EmNSaaepIjMACqqT2uaelozR1VTvigaOFq6UyNmjBQkkPoZ6sEnUEJELMVzHlVIUYXTLOWFs50hWu9AUSHPcYmmaK5m9FAY15OTsnfzdfwk5vMhzMB_3RwynsmiUrRF1nUE_XmTpHFpCKi3zxPwGOdrGv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Visual+query+compression+with+locality+preserving+projection+on+Grassmann+manifold&rft.au=Zhang%2C+Zhaobin&rft.au=Li%2C+Li&rft.au=Li%2C+Zhu&rft.au=Li%2C+Houqiang&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3026&rft.epage=3030&rft_id=info:doi/10.1109%2FICIP.2017.8296838&rft.externalDocID=8296838