Visual query compression with locality preserving projection on Grassmann manifold
For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compress...
Saved in:
| Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 3026 - 3030 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2381-8549 |
| DOI | 10.1109/ICIP.2017.8296838 |
Cover
| Abstract | For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compression, that utilizes subspaces that optimized for preserving key point feature matching properties than the reconstruction performance, and allows for a set of optimal subspaces on Grassmann manifold that can better adapt to the local manifold geometry. The simulation demonstrates that such scheme has very low overhead in signaling subspaces, and has very much improved performance on the repeatability of the keypoint matching subject to bit rate constraints. |
|---|---|
| AbstractList | For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of the overall system that can directly affect the efficiency and latency. In this work, we examine a new approach in visual key points compression, that utilizes subspaces that optimized for preserving key point feature matching properties than the reconstruction performance, and allows for a set of optimal subspaces on Grassmann manifold that can better adapt to the local manifold geometry. The simulation demonstrates that such scheme has very low overhead in signaling subspaces, and has very much improved performance on the repeatability of the keypoint matching subject to bit rate constraints. |
| Author | Li, Li Zhang, Zhaobin Li, Zhu Li, Houqiang |
| Author_xml | – sequence: 1 givenname: Zhaobin surname: Zhang fullname: Zhang, Zhaobin organization: University of Missouri - Kansas City – sequence: 2 givenname: Li surname: Li fullname: Li, Li organization: University of Missouri - Kansas City – sequence: 3 givenname: Zhu surname: Li fullname: Li, Zhu organization: University of Missouri - Kansas City – sequence: 4 givenname: Houqiang surname: Li fullname: Li, Houqiang organization: University of Science and Technology of China |
| BookMark | eNotUNtKw0AUXEXBtvYDxJf8QOLekpx9lKA1UFBEfS2b9axuSTZ1N7Xk702xcJgZhmEYzpxc-N4jITeMZoxRdVdX9UvGKSsz4KoAAWdkqUpgOVWUszKHczLjAlgKuVRXZB7jltIpL9iMvH64uNdt8rPHMCam73YBY3S9Tw5u-E7a3ujWDWNytDH8Ov81yX6LZjhmplsFHWOnvU8mcLZvP6_JpdVtxOWJF-T98eGtekrXz6u6ul-nbto0pFo2mhvJixLBFFIBGGvBCmqUgkKgsbmW1lC0giNTuqC24dagzHPaQGnEgtz-9zpE3OyC63QYN6cXiD9S7FQW |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP.2017.8296838 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781509021758 1509021752 |
| EISSN | 2381-8549 |
| EndPage | 3030 |
| ExternalDocumentID | 8296838 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-a4ba2c4267e8c64988cff8f30c99863ecf5a4fc0ef32e19a60fb2fce4550b87c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:52:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-a4ba2c4267e8c64988cff8f30c99863ecf5a4fc0ef32e19a60fb2fce4550b87c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8296838 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020131 ssj0002269320 |
| Score | 2.0254264 |
| Snippet | For a variety of visual search and visual key points based navigation applications, compression of visual key point features like SIFT is an important part of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3026 |
| SubjectTerms | Binary trees Bit rate Compression Grassmann manifold Indexing LPP Manifolds Principal component analysis Transforms Visual identification Visual query Visualization |
| Title | Visual query compression with locality preserving projection on Grassmann manifold |
| URI | https://ieeexplore.ieee.org/document/8296838 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycGj7dpma9PzcG7CZIiT3UaSvshwdrK1B_3rfWlrRfEg9FBCKCEh_b738n0vAFcYWVSPEwpLlHGI_yeOIqR3wjii_lz6QliD8_Q-HM_7d4vBogHXtRcGEQvxGbr2tTjLTzY6t6myngjiUHDRhGYkwtKrVedTiEYQFfHqYMvWkalOMX0v7k2Gk5kVckVu9ZEft6kUYDJqw_RrGKWG5MXNM-Xqj18VGv87zn3oftv22KwGpANoYHoI7YpnsmoX7zrw8LTa5XLNCBK278yKyksxbMpsVpYV8EbknNlm-ytJn1mVsLF96LndEuV-lWnKbPUMs1knXZiPbh6HY6e6W8FZEWHIHNlXMtAEzxEKHfZjIbQxwnBPU_wVctRmIPtGe2h4gH4sQ8-owGi0JmglIs2PoJVuUjwGFhPiY8Ilx4hiSyGF8NHTgQr0QBG9CU6gY6do-VaWz1hWs3P6d_MZ7NllKmVc59DKtjleEO5n6rJY8E8_-a5i |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjm2Pdj-5MRFAgxIDhRtquNUQcBraD_vW-bnNG48Fkh6VplqZN933v9fteAa5UaFA9ijEsEdpC_h9bApHeCqIQ-1PeZswYnIejoDf17mf-rAbXlRdGKZWLz5RtXvOz_HglM5Mqu2FuFDDKtmDb9zzPL9xaVUYFiQSSEacKt0wlmfIcs-1EN_1Of2ykXKFdfubHfSo5nHQbMPwaSKEiebGzVNjy41eNxv-OdA9a38Y9Mq4gaR9qKjmARsk0SbmPN014fFpsMr4kCArrd2Jk5YUcNiEmL0tygEN6Tkyz-Zkkz6RM2Zg--NytkXS_8iQhpn6GXi3jFky7t5NOzypvV7AWSBlSi3uCuxIBOlRMBl7EmNSaaepIjMACqqT2uaelozR1VTvigaOFq6UyNmjBQkkPoZ6sEnUEJELMVzHlVIUYXTLOWFs50hWu9AUSHPcYmmaK5m9FAY15OTsnfzdfwk5vMhzMB_3RwynsmiUrRF1nUE_XmTpHFpCKi3zxPwGOdrGv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Visual+query+compression+with+locality+preserving+projection+on+Grassmann+manifold&rft.au=Zhang%2C+Zhaobin&rft.au=Li%2C+Li&rft.au=Li%2C+Zhu&rft.au=Li%2C+Houqiang&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3026&rft.epage=3030&rft_id=info:doi/10.1109%2FICIP.2017.8296838&rft.externalDocID=8296838 |