Energy Prediction Based MAC Layer Optimization for Harvesting Enabled WSNs in Smart Cities
MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar...
        Saved in:
      
    
          | Published in | 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) pp. 1 - 6 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.06.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2577-2465 | 
| DOI | 10.1109/VTCSpring.2018.8417855 | 
Cover
| Abstract | MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar Energy Harvesting Wireless Sensor Networks (EH-WSNs). In contrast to previous schemes that limit energy consumption based on current availability only, we propose Energy Prediction based Energy Management algorithm (EPEM). This algorithm exploits energy prediction and sets threshold rate of energy consumption to ensure accumulation of sufficient energy for non- energy harvesting period. Our analysis shows that MAC optimization (MO) along with EPEM algorithm not only improves performance by 72% but also avoids energy scarcity during non-energy harvesting period. | 
    
|---|---|
| AbstractList | MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar Energy Harvesting Wireless Sensor Networks (EH-WSNs). In contrast to previous schemes that limit energy consumption based on current availability only, we propose Energy Prediction based Energy Management algorithm (EPEM). This algorithm exploits energy prediction and sets threshold rate of energy consumption to ensure accumulation of sufficient energy for non- energy harvesting period. Our analysis shows that MAC optimization (MO) along with EPEM algorithm not only improves performance by 72% but also avoids energy scarcity during non-energy harvesting period. | 
    
| Author | Amjad, Madiha Qureshi, Hassaan Khaliq Lestas, Marios Mumtaz, Shahid Rodrigues, Joel J. P. C.  | 
    
| Author_xml | – sequence: 1 givenname: Madiha surname: Amjad fullname: Amjad, Madiha email: mamjad.phd15seecs@seecs.edu.pk organization: Nat. Univ. of Sci. & Technol., Islamabad, Pakistan – sequence: 2 givenname: Hassaan Khaliq surname: Qureshi fullname: Qureshi, Hassaan Khaliq email: hassaan.khaliq@seecs.edu.pk organization: Nat. Univ. of Sci. & Technol., Islamabad, Pakistan – sequence: 3 givenname: Marios surname: Lestas fullname: Lestas, Marios email: eng.lm@frederick.ac.cy organization: Dept. of Electr. Eng., Frederick Univ., Nicosia, Cyprus – sequence: 4 givenname: Shahid surname: Mumtaz fullname: Mumtaz, Shahid organization: Inst. de Telecomunicaes, Portugal – sequence: 5 givenname: Joel J. P. C. surname: Rodrigues fullname: Rodrigues, Joel J. P. C. organization: Inst. de Telecomunicaes, Portugal  | 
    
| BookMark | eNotkN1KAzEUhKMo2NY-gSB5ga05yZ78XNal_kC1QouCNyXtni2RNi3JItSnd9FezcUMMx_TZxdxH4mxWxAjAOHu3hfV_JBC3IykADuyJRiLeMaGzlhAZbVWiOU560k0ppClxivWz_lLCAGgZY99TiKlzZG_JarDug37yO99ppq_jCs-9UdKfHZowy78-D-z2Sf-5NM35bZb5ZPoV9su_TF_zTxEPt_51PIqtIHyNbts_DbT8KQDtniYLKqnYjp7fK7G0yKAwbbwJZYdWK0bj05KT-iULX2Da2lkLd3Ko4UVGGWkU7V2wgB6TeAa0s7WasBu_msDES27MzqE4_L0hPoFhF9U8w | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/VTCSpring.2018.8417855 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9781538663554 1538663554  | 
    
| EISSN | 2577-2465 | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 8417855 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IG 6IH 6IL 6IM 6IN AAJGR AAWTH ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i175t-a454246d6fa5922ae59384af5c272d29ba581b1737293d690715a6e19fe698d3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:29:47 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-a454246d6fa5922ae59384af5c272d29ba581b1737293d690715a6e19fe698d3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_8417855 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-June | 
    
| PublicationDateYYYYMMDD | 2018-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-June  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) | 
    
| PublicationTitleAbbrev | VTCSpring | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001162 ssj0002684078  | 
    
| Score | 2.0813227 | 
    
| Snippet | MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Analytical models Energy consumption Energy harvesting Mathematical model Optimization Reliability Throughput  | 
    
| Title | Energy Prediction Based MAC Layer Optimization for Harvesting Enabled WSNs in Smart Cities | 
    
| URI | https://ieeexplore.ieee.org/document/8417855 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCfbTnrxYzN-h4NH25WvFo7abFmMmyabunhZXltqFrPOaHfxrxdonR_x4A0IEMID3gPe7_cQOgtVRoAy4WnQzOPAtAdg9lUgglRyognkFig8HIWDO341FdMGOl9jYbTWzvlM-zbp_vKzZbqyT2Vd0ziSQjRRM5JhhdVan7qkZkJyGUdhEskaEUwC1b2fxNVLmfXmkn7d04-QKk6j9LfQ8HMslSPJs78qEz99_0XT-N_BbqPOF3YP36610g5q6GIXbX6jHWyjx54D_Jlq9pfGSgZfGmWW4eFFjK_BGOH4xpwkixqiiY1di20MIUvIUTzhnoNbZfhhPHrD8wKPF2b54dhRs3bQpN-bxAOvjrHgzY3hUHrABac8zMIchKIUtFBMcshFSiOaUZWAMIYtscFsFMvsVZoICDVRuQ6VzNgeahXLQu8jrBIWAc2Bckg5oYHUgoecSGAsFwkVB6htJ2n2UrFozOr5Ofy7-AhtWEFVTlnHqFW-rvSJUf9lcurk_gF9hq3n | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCZzHtSLH9P4LQePdhtfbTlqs2XqNk02dfGyvC3ULGad0e7irxdonR_x4A1IIQQo7wO8z_MidOpLRYAy4WnQzOPAtAdg_qumaCYhJ5pAaonCvb7fueNXIzGqoLMFF0Zr7ZzPdN0m3Vu-miVze1XWMJWDUIgltCw456Jgay32XVJqIbmMEzEJwpITTJqycT-Mirsy688V1su2fgRVcTalvY56n70pXEme6_M8rifvv4Qa_9vdDbT9xd7Dtwu7tIkqOttCa9-EB2voseUof-Yz-05j5wZfGHOmcO88wl0wMBzfmL1kWpI0sUG22EYRspIc2RNuOcKVwg-D_hueZHgwNQsQR06cdRsN261h1PHKKAvexECH3AMuOOW-8lMQklLQQrKQQyoSGlBFZQzCQFtiw9lIpuxhmgjwNZGp9mWo2A6qZrNM7yIsYxYATYFySDihzVAL7nMSAmOpiKnYQzU7SOOXQkdjXI7P_t_FJ2ilM-x1x93L_vUBWrWTVrhoHaJq_jrXRwYM5PGxWwMfyeKxNA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+87th+Vehicular+Technology+Conference+%28VTC+Spring%29&rft.atitle=Energy+Prediction+Based+MAC+Layer+Optimization+for+Harvesting+Enabled+WSNs+in+Smart+Cities&rft.au=Amjad%2C+Madiha&rft.au=Qureshi%2C+Hassaan+Khaliq&rft.au=Lestas%2C+Marios&rft.au=Mumtaz%2C+Shahid&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FVTCSpring.2018.8417855&rft.externalDocID=8417855 |