Energy Prediction Based MAC Layer Optimization for Harvesting Enabled WSNs in Smart Cities

MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 87th Vehicular Technology Conference (VTC Spring) pp. 1 - 6
Main Authors Amjad, Madiha, Qureshi, Hassaan Khaliq, Lestas, Marios, Mumtaz, Shahid, Rodrigues, Joel J. P. C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN2577-2465
DOI10.1109/VTCSpring.2018.8417855

Cover

Abstract MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar Energy Harvesting Wireless Sensor Networks (EH-WSNs). In contrast to previous schemes that limit energy consumption based on current availability only, we propose Energy Prediction based Energy Management algorithm (EPEM). This algorithm exploits energy prediction and sets threshold rate of energy consumption to ensure accumulation of sufficient energy for non- energy harvesting period. Our analysis shows that MAC optimization (MO) along with EPEM algorithm not only improves performance by 72% but also avoids energy scarcity during non-energy harvesting period.
AbstractList MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In this paper, we perform MAC layer optimization for maximizing throughput subject to application-specific needs and energy availability in Solar Energy Harvesting Wireless Sensor Networks (EH-WSNs). In contrast to previous schemes that limit energy consumption based on current availability only, we propose Energy Prediction based Energy Management algorithm (EPEM). This algorithm exploits energy prediction and sets threshold rate of energy consumption to ensure accumulation of sufficient energy for non- energy harvesting period. Our analysis shows that MAC optimization (MO) along with EPEM algorithm not only improves performance by 72% but also avoids energy scarcity during non-energy harvesting period.
Author Amjad, Madiha
Qureshi, Hassaan Khaliq
Lestas, Marios
Mumtaz, Shahid
Rodrigues, Joel J. P. C.
Author_xml – sequence: 1
  givenname: Madiha
  surname: Amjad
  fullname: Amjad, Madiha
  email: mamjad.phd15seecs@seecs.edu.pk
  organization: Nat. Univ. of Sci. & Technol., Islamabad, Pakistan
– sequence: 2
  givenname: Hassaan Khaliq
  surname: Qureshi
  fullname: Qureshi, Hassaan Khaliq
  email: hassaan.khaliq@seecs.edu.pk
  organization: Nat. Univ. of Sci. & Technol., Islamabad, Pakistan
– sequence: 3
  givenname: Marios
  surname: Lestas
  fullname: Lestas, Marios
  email: eng.lm@frederick.ac.cy
  organization: Dept. of Electr. Eng., Frederick Univ., Nicosia, Cyprus
– sequence: 4
  givenname: Shahid
  surname: Mumtaz
  fullname: Mumtaz, Shahid
  organization: Inst. de Telecomunicaes, Portugal
– sequence: 5
  givenname: Joel J. P. C.
  surname: Rodrigues
  fullname: Rodrigues, Joel J. P. C.
  organization: Inst. de Telecomunicaes, Portugal
BookMark eNotkN1KAzEUhKMo2NY-gSB5ga05yZ78XNal_kC1QouCNyXtni2RNi3JItSnd9FezcUMMx_TZxdxH4mxWxAjAOHu3hfV_JBC3IykADuyJRiLeMaGzlhAZbVWiOU560k0ppClxivWz_lLCAGgZY99TiKlzZG_JarDug37yO99ppq_jCs-9UdKfHZowy78-D-z2Sf-5NM35bZb5ZPoV9su_TF_zTxEPt_51PIqtIHyNbts_DbT8KQDtniYLKqnYjp7fK7G0yKAwbbwJZYdWK0bj05KT-iULX2Da2lkLd3Ko4UVGGWkU7V2wgB6TeAa0s7WasBu_msDES27MzqE4_L0hPoFhF9U8w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTCSpring.2018.8417855
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538663554
1538663554
EISSN 2577-2465
EndPage 6
ExternalDocumentID 8417855
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-a454246d6fa5922ae59384af5c272d29ba581b1737293d690715a6e19fe698d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a454246d6fa5922ae59384af5c272d29ba581b1737293d690715a6e19fe698d3
PageCount 6
ParticipantIDs ieee_primary_8417855
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE 87th Vehicular Technology Conference (VTC Spring)
PublicationTitleAbbrev VTCSpring
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
ssj0002684078
Score 2.0813227
Snippet MAC layer adaptation is very crucial for supporting dense and diverse data requirements of sensor networks in smart cities, powered by energy harvesting. In...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Energy consumption
Energy harvesting
Mathematical model
Optimization
Reliability
Throughput
Title Energy Prediction Based MAC Layer Optimization for Harvesting Enabled WSNs in Smart Cities
URI https://ieeexplore.ieee.org/document/8417855
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCfbTnrxYzN-h4NH25WvFo7abFmMmyabunhZXltqFrPOaHfxrxdonR_x4A0IEMID3gPe7_cQOgtVRoAy4WnQzOPAtAdg9lUgglRyognkFig8HIWDO341FdMGOl9jYbTWzvlM-zbp_vKzZbqyT2Vd0ziSQjRRM5JhhdVan7qkZkJyGUdhEskaEUwC1b2fxNVLmfXmkn7d04-QKk6j9LfQ8HMslSPJs78qEz99_0XT-N_BbqPOF3YP36610g5q6GIXbX6jHWyjx54D_Jlq9pfGSgZfGmWW4eFFjK_BGOH4xpwkixqiiY1di20MIUvIUTzhnoNbZfhhPHrD8wKPF2b54dhRs3bQpN-bxAOvjrHgzY3hUHrABac8zMIchKIUtFBMcshFSiOaUZWAMIYtscFsFMvsVZoICDVRuQ6VzNgeahXLQu8jrBIWAc2Bckg5oYHUgoecSGAsFwkVB6htJ2n2UrFozOr5Ofy7-AhtWEFVTlnHqFW-rvSJUf9lcurk_gF9hq3n
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCZzHtSLH9P4LQePdhtfbTlqs2XqNk02dfGyvC3ULGad0e7irxdonR_x4A1IIQQo7wO8z_MidOpLRYAy4WnQzOPAtAdg_qumaCYhJ5pAaonCvb7fueNXIzGqoLMFF0Zr7ZzPdN0m3Vu-miVze1XWMJWDUIgltCw456Jgay32XVJqIbmMEzEJwpITTJqycT-Mirsy688V1su2fgRVcTalvY56n70pXEme6_M8rifvv4Qa_9vdDbT9xd7Dtwu7tIkqOttCa9-EB2voseUof-Yz-05j5wZfGHOmcO88wl0wMBzfmL1kWpI0sUG22EYRspIc2RNuOcKVwg-D_hueZHgwNQsQR06cdRsN261h1PHKKAvexECH3AMuOOW-8lMQklLQQrKQQyoSGlBFZQzCQFtiw9lIpuxhmgjwNZGp9mWo2A6qZrNM7yIsYxYATYFySDihzVAL7nMSAmOpiKnYQzU7SOOXQkdjXI7P_t_FJ2ilM-x1x93L_vUBWrWTVrhoHaJq_jrXRwYM5PGxWwMfyeKxNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+87th+Vehicular+Technology+Conference+%28VTC+Spring%29&rft.atitle=Energy+Prediction+Based+MAC+Layer+Optimization+for+Harvesting+Enabled+WSNs+in+Smart+Cities&rft.au=Amjad%2C+Madiha&rft.au=Qureshi%2C+Hassaan+Khaliq&rft.au=Lestas%2C+Marios&rft.au=Mumtaz%2C+Shahid&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FVTCSpring.2018.8417855&rft.externalDocID=8417855