An optimal Renewable Portfolio Standard using Genetic Algorithm - Benders' decomposition method in a Least Cost Approach
This paper presents the Least Cost Renewable Energy Portfolio Analysis (LCREPA) approach that utilizes the Genetic Algorithm - Benders' decomposition (GA-BD) method, which could achieve an order of magnitude of improvement in terms of run times at larger instances, in determining the optimal Re...
Saved in:
Published in | TENCON 2012 IEEE Region 10 Conference pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 1467348236 9781467348232 |
ISSN | 2159-3442 |
DOI | 10.1109/TENCON.2012.6412275 |
Cover
Abstract | This paper presents the Least Cost Renewable Energy Portfolio Analysis (LCREPA) approach that utilizes the Genetic Algorithm - Benders' decomposition (GA-BD) method, which could achieve an order of magnitude of improvement in terms of run times at larger instances, in determining the optimal Renewable Portfolio Standard (RPS) percentage. The detailed demonstration of the LCREPA approach is implemented through a case study that analyzes RPS scenarios - status quo, base case and sensitivity cases - in the Philippine Luzon grid. The timing of candidate generating units in the base case and sensitivity case models is calculated using the GA-BD computer program developed to evaluate the most economical power generation expansion planning for additional generating units subject to the integrated requirements of power demands, power capacities, energy availability and reliability. In sensitivity case models, the base case inputs - RPS cap, peak demand, capacity factor, fuel cost and investment cost - are adjusted. The outputs of the scenarios - total RPS percentage, levelized cost of electricity, total CO 2 emission reduction, capacity and energy mix - are examined and compared with the Philippines' Planned RPS. |
---|---|
AbstractList | This paper presents the Least Cost Renewable Energy Portfolio Analysis (LCREPA) approach that utilizes the Genetic Algorithm - Benders' decomposition (GA-BD) method, which could achieve an order of magnitude of improvement in terms of run times at larger instances, in determining the optimal Renewable Portfolio Standard (RPS) percentage. The detailed demonstration of the LCREPA approach is implemented through a case study that analyzes RPS scenarios - status quo, base case and sensitivity cases - in the Philippine Luzon grid. The timing of candidate generating units in the base case and sensitivity case models is calculated using the GA-BD computer program developed to evaluate the most economical power generation expansion planning for additional generating units subject to the integrated requirements of power demands, power capacities, energy availability and reliability. In sensitivity case models, the base case inputs - RPS cap, peak demand, capacity factor, fuel cost and investment cost - are adjusted. The outputs of the scenarios - total RPS percentage, levelized cost of electricity, total CO 2 emission reduction, capacity and energy mix - are examined and compared with the Philippines' Planned RPS. |
Author | Nerves, A. C. del Mundo, R. D. Ranola, J. A. P. |
Author_xml | – sequence: 1 givenname: J. A. P. surname: Ranola fullname: Ranola, J. A. P. email: jo_ann.ranola@up.edu.ph organization: Electr. & Electron. Eng. Inst., Univ. of the Philippines, Quezon City, Philippines – sequence: 2 givenname: A. C. surname: Nerves fullname: Nerves, A. C. email: anerves@eee.upd.edu.ph organization: Electr. & Electron. Eng. Inst., Univ. of the Philippines, Quezon City, Philippines – sequence: 3 givenname: R. D. surname: del Mundo fullname: del Mundo, R. D. email: rddelmundo@gmail.com organization: Electr. & Electron. Eng. Inst., Univ. of the Philippines, Quezon City, Philippines |
BookMark | eNo1UFFLwzAYjDhBN_cL9pI3nzrzpWmTPtYypzA20fk80ibZIm1S0oj67y047-GOg-PgboomzjuN0ALIEoAU9_vVttptl5QAXeYMKOXZBZoXXADLecoEZcUlmv6bNJ-gGwpZkaSM0Ws0H4YPMiInlAh-g75Lh30fbSdb_Kqd_pJ1q_GLD9H41nr8FqVTMij8OVh3xOsxEm2Dy_bog42nDif4QTulw3CHlW581_vBRusd7nQ8eYWtwxJvtBwirvxIZd8HL5vTLboysh30_Kwz9P642ldPyWa3fq7KTWKBZzEplOIgCSjJuTF5mhHDAJRoiKRQCw1FTVSeZYoT0dSmTiE3QDIhGqOpICydocVfr9VaH_owLg0_h_Nx6S9bs2Jr |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/TENCON.2012.6412275 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781467348249 9781467348225 1467348228 1467348244 |
EndPage | 6 |
ExternalDocumentID | 6412275 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-9dd71a01da77ff6350f411d8c0a21b8e19b0d655d708cbfb316f10588cfe28043 |
IEDL.DBID | RIE |
ISBN | 1467348236 9781467348232 |
ISSN | 2159-3442 |
IngestDate | Wed Aug 27 03:48:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-9dd71a01da77ff6350f411d8c0a21b8e19b0d655d708cbfb316f10588cfe28043 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6412275 |
PublicationCentury | 2000 |
PublicationDate | 2012-Nov. |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-Nov. |
PublicationDecade | 2010 |
PublicationTitle | TENCON 2012 IEEE Region 10 Conference |
PublicationTitleAbbrev | TENCON |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000602087 ssj0001124376 |
Score | 1.5083814 |
Snippet | This paper presents the Least Cost Renewable Energy Portfolio Analysis (LCREPA) approach that utilizes the Genetic Algorithm - Benders' decomposition (GA-BD)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Benders' decomposition Electricity genetic algorithm Investments least cost Planning portfolio analysis Portfolios Power generation power generation expansion planning renewable energy Renewable energy resources renewable portfolio standard |
Title | An optimal Renewable Portfolio Standard using Genetic Algorithm - Benders' decomposition method in a Least Cost Approach |
URI | https://ieeexplore.ieee.org/document/6412275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELWAE70UChUtH5pDJS71YjuO7RyX1SJUFYQoSNyQHduw6pIgyArEr8eThIUiDr1EiS9J7NHMePzmPUJ-RO0y57WgUmtPpbGeOhk0LWwaNyngqhwbhY-O1eG5_HWRXyyQn_NemBBCCz4LA7xtz_J9Xc6wVLanJBdC54tkMZlZ16s1r6cwhXKT-rW-wpFqr9WWSxGbZrLdtaNfQDqXTL3QPfXPomck4qzYOxun_fQxwr7EoH_lP9orbeg5-EyOXj66Q5z8HcwaNyif3vE5_u9frZD11yY_OJmHr1WyEKov5NMbfsI18jisoE4-5cZO4TQ5xQfsswIEn8Z6OqnhT1-HAETPXwFSWCc7hOH0qr6bNNc3QGG_laq73wUfEL3eQ8SgE66GSQUWfqN8EIzqdBn2DOfr5PxgfDY6pL1UA52k_KOhhfeaW8a91TrGlMSwKDn3pmRWcGcCLxzzKs-9ZqZ00WVcxZTZGVPGIAyT2VeyVNVV2CCQO1yTolRWWMlZNMpEK4xSLJTOWfGNrOEcXt52bByX_fR9_3h4kyzjOnbdg1tkqbmbhe2URjRup7WfZ1p5wCw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9MwGLbGdgAufGyIr433gMQFd7bj2M6xmzZ1o60QdNJulR3bW0WXoJEKxK_Hb5J1MHHYJUp8SWJb75ef93kIeR-1y5zXgkqtPZXGeupk0LSwadwkh6tybBSeTNXoTJ6e5-cb5OO6FyaE0ILPwgBv27N8X5crLJXtK8mF0PkDspWnrMJ03VrrigpTKDipbyssHMn2WnW55LNpJtu8HS0DErpk6obwqX8WPScRZ8X-7Chl1FMEfolB_9J_1Fda53P8hExuPrvDnHwbrBo3KH_fYXS87389JTu3bX7wee3AnpGNUD0nj_9iKNwmv4YV1MmqXNklfElm8Sd2WgHCT2O9XNTwta9EAOLnLwBJrNNOhOHyor5eNJdXQOGgFav78QF8QPx6DxKDTroaFhVYGKOAEBzW6TLsOc53yNnx0exwRHuxBrpIEUhDC-81t4x7q3WMKYxhUXLuTcms4M4EXjjmVZ57zUzposu4iim2M6aMQRgmsxdks6qr8JJA7nBNilJZYSVn0SgTrTBKsVA6Z8Urso1zOP_e8XHM--l7_f_hd-ThaDYZz8cn009vyCNc066X8C3ZbK5XYTcFFY3ba_fSH6w0w38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TENCON+2012+IEEE+Region+10+Conference&rft.atitle=An+optimal+Renewable+Portfolio+Standard+using+Genetic+Algorithm+-+Benders%27+decomposition+method+in+a+Least+Cost+Approach&rft.au=Ranola%2C+J.+A.+P.&rft.au=Nerves%2C+A.+C.&rft.au=del+Mundo%2C+R.+D.&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467348232&rft.issn=2159-3442&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTENCON.2012.6412275&rft.externalDocID=6412275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3442&client=summon |