Reduced resolution lane detection algorithm

Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more a...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE AFRICON pp. 1459 - 1464
Main Authors Li Dang, Tewolde, Girma, Xiaoyuan Zhang, Jaerock Kwon
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2153-0033
DOI10.1109/AFRCON.2017.8095697

Cover

Abstract Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more applicable. The algorithm is mainly based on lane mark detection and Reduced Resolution lane detection algorithm (R 2 algorithm). The accuracy of the lane detection, using this algorithm, would not be affected and the system, meantime, has a quicker reaction. The high frame per second result shows that the high performance lane detection algorithm is able to be applied to autonomous vehicles with improved success.
AbstractList Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more applicable. The algorithm is mainly based on lane mark detection and Reduced Resolution lane detection algorithm (R 2 algorithm). The accuracy of the lane detection, using this algorithm, would not be affected and the system, meantime, has a quicker reaction. The high frame per second result shows that the high performance lane detection algorithm is able to be applied to autonomous vehicles with improved success.
Author Li Dang
Xiaoyuan Zhang
Jaerock Kwon
Tewolde, Girma
Author_xml – sequence: 1
  surname: Li Dang
  fullname: Li Dang
  email: dang8220@kettering.edu
  organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA
– sequence: 2
  givenname: Girma
  surname: Tewolde
  fullname: Tewolde, Girma
  email: gtewolde@kettering.edu
  organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA
– sequence: 3
  surname: Xiaoyuan Zhang
  fullname: Xiaoyuan Zhang
  email: zhan1645@kettering.edu
  organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA
– sequence: 4
  surname: Jaerock Kwon
  fullname: Jaerock Kwon
  email: jkwon@kettering.edu
  organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA
BookMark eNotj01Lw0AUAFepYFv7C3rJXRL37duP7LEEq0JpofRetnlvdSVNJEkP_ntFexrmMjAzMWm7loVYgiwApH9arffVblsoCa4opTfWuxsxA4OlVc4ZdSum6tdyKRHvxWIYPqWUIEuDaKbicc90qZmynoeuuYypa7MmtJwRj1z_aWjeuz6NH-cHcRdDM_Diyrk4rJ8P1Wu-2b28VatNnsCZMfekkGptKGjk6LSyykb0lhGU8WjpRPpEFFFTCAzolLNkVHQOao2Ac7H8zyZmPn716Rz67-N1DX8AQYlEAg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/AFRCON.2017.8095697
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538627752
9781538627754
EISSN 2153-0033
EndPage 1464
ExternalDocumentID 8095697
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-9d23dc45da43ef742626f396e3125936dbd4bddf34daae137276d52f771c4313
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9d23dc45da43ef742626f396e3125936dbd4bddf34daae137276d52f771c4313
PageCount 6
ParticipantIDs ieee_primary_8095697
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE AFRICON
PublicationTitleAbbrev AFRCON
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085335
ssj0001968412
Score 1.6654161
Snippet Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the...
SourceID ieee
SourceType Publisher
StartPage 1459
SubjectTerms Cameras
Colored noise
Detection algorithms
Image color analysis
Image edge detection
Image resolution
Lane detection
lane pixel
reduced resolution
threshold image
Transforms
Title Reduced resolution lane detection algorithm
URI https://ieeexplore.ieee.org/document/8095697
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7ZdtKLH5v4TQ8ebdc0adIeZTiGsCkyYbeR9E10fnQy2ou_3qStm4oHbyGBkE-eJ8nzPgG4kKESSCLtE5ToM55p3z3f-aEKmUmVhejYxQ6PJ3z0wG5m8awFl-tYGK11JT7TgUtWb_m4zEp3VdZPnGteKtrQFgmvY7U29ymWO9AG-p9r25eEkagxGiJh2r8a3g9uJ07NJYKmph9fqlSIMtyB8VdbaiHJS1AWKsg-ftk0_rexu9DbxO55d2tU2oOWzvdh-5vtYBfsmKKdUfTsUbtZeZ7TvHqoi0qZlXvy9XG5WhRPbz2YDq-ng5HffJrgLywTKPwUI4oZi1Eyqo1whvPc0JRraqlMSjkqZArRUIZSakItf-EYR0YIklkyQQ-gky9zfQieSAy1JVKYWDKiTZIxwaS221RxkqTsCLqu1_P32hZj3nT4-O_sE9hyI1_Ls06hU6xKfWbxvFDn1UR-AqE-nds
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHi3iTQZGksaxEycjqqgKtAWhInWr7FwbyiNFVbrw9dhJaAExsFm2FNm-sc6xfe4xwJnwJUcSKJegQJdFqXLt9Z3rS5_pRBqIDm3ucH8QdR_Y9Sgc1eB8kQujlCrEZ8qzxeIuH6fp3B6VtWLrmpfwFVgNGWNhma21PFEx7IFW4P9cGr_EjASV1RDxk9ZF5759O7B6Lu5V3_rxqEqBKZ1N6H_1ppSSvHjzXHrpxy-jxv92dwuay-w9526BS9tQU9kObHwzHmyAmVU0MUXHbLarf8-xqlcHVV5oszJHvD5OZ5P86a0Jw87lsN11q2cT3InhArmbYEAxZSEKRpXm1nI-0jSJFDVkJqERSmQSUVOGQihCDYOJMAw05yQ1dILuQj2bZmoPHB5raloE16FgROk4ZZwJZRaqjEicsH1o2FGP30tjjHE14IO_q09hrTvs98a9q8HNIazbKJRirSOo57O5OjbonsuTIqifGm2hKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+AFRICON&rft.atitle=Reduced+resolution+lane+detection+algorithm&rft.au=Li+Dang&rft.au=Tewolde%2C+Girma&rft.au=Xiaoyuan+Zhang&rft.au=Jaerock+Kwon&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2153-0033&rft.spage=1459&rft.epage=1464&rft_id=info:doi/10.1109%2FAFRCON.2017.8095697&rft.externalDocID=8095697