Reduced resolution lane detection algorithm
Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more a...
        Saved in:
      
    
          | Published in | 2017 IEEE AFRICON pp. 1459 - 1464 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2153-0033 | 
| DOI | 10.1109/AFRCON.2017.8095697 | 
Cover
| Abstract | Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more applicable. The algorithm is mainly based on lane mark detection and Reduced Resolution lane detection algorithm (R 2 algorithm). The accuracy of the lane detection, using this algorithm, would not be affected and the system, meantime, has a quicker reaction. The high frame per second result shows that the high performance lane detection algorithm is able to be applied to autonomous vehicles with improved success. | 
    
|---|---|
| AbstractList | Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the lane detection has always been an important part. This paper describes an algorithm which can make the lane detection process faster and more applicable. The algorithm is mainly based on lane mark detection and Reduced Resolution lane detection algorithm (R 2 algorithm). The accuracy of the lane detection, using this algorithm, would not be affected and the system, meantime, has a quicker reaction. The high frame per second result shows that the high performance lane detection algorithm is able to be applied to autonomous vehicles with improved success. | 
    
| Author | Li Dang Xiaoyuan Zhang Jaerock Kwon Tewolde, Girma  | 
    
| Author_xml | – sequence: 1 surname: Li Dang fullname: Li Dang email: dang8220@kettering.edu organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA – sequence: 2 givenname: Girma surname: Tewolde fullname: Tewolde, Girma email: gtewolde@kettering.edu organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA – sequence: 3 surname: Xiaoyuan Zhang fullname: Xiaoyuan Zhang email: zhan1645@kettering.edu organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA – sequence: 4 surname: Jaerock Kwon fullname: Jaerock Kwon email: jkwon@kettering.edu organization: Electr. & Comput. Eng. Dept., Kettering Univ., Flint, MI, USA  | 
    
| BookMark | eNotj01Lw0AUAFepYFv7C3rJXRL37duP7LEEq0JpofRetnlvdSVNJEkP_ntFexrmMjAzMWm7loVYgiwApH9arffVblsoCa4opTfWuxsxA4OlVc4ZdSum6tdyKRHvxWIYPqWUIEuDaKbicc90qZmynoeuuYypa7MmtJwRj1z_aWjeuz6NH-cHcRdDM_Diyrk4rJ8P1Wu-2b28VatNnsCZMfekkGptKGjk6LSyykb0lhGU8WjpRPpEFFFTCAzolLNkVHQOao2Ac7H8zyZmPn716Rz67-N1DX8AQYlEAg | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/AFRCON.2017.8095697 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 1538627752 9781538627754  | 
    
| EISSN | 2153-0033 | 
    
| EndPage | 1464 | 
    
| ExternalDocumentID | 8095697 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i175t-9d23dc45da43ef742626f396e3125936dbd4bddf34daae137276d52f771c4313 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:29:13 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-9d23dc45da43ef742626f396e3125936dbd4bddf34daae137276d52f771c4313 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_8095697 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-Sept. | 
    
| PublicationDateYYYYMMDD | 2017-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2017 IEEE AFRICON | 
    
| PublicationTitleAbbrev | AFRCON | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001085335 ssj0001968412  | 
    
| Score | 1.6654161 | 
    
| Snippet | Autonomous vehicles, as people all know, will have great impact to human transportation in the near future. In the vision system of autonomous vehicles, the... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1459 | 
    
| SubjectTerms | Cameras Colored noise Detection algorithms Image color analysis Image edge detection Image resolution Lane detection lane pixel reduced resolution threshold image Transforms  | 
    
| Title | Reduced resolution lane detection algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/8095697 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7ZdtKLH5v4TQ8ebdc0adIeZTiGsCkyYbeR9E10fnQy2ou_3qStm4oHbyGBkE-eJ8nzPgG4kKESSCLtE5ToM55p3z3f-aEKmUmVhejYxQ6PJ3z0wG5m8awFl-tYGK11JT7TgUtWb_m4zEp3VdZPnGteKtrQFgmvY7U29ymWO9AG-p9r25eEkagxGiJh2r8a3g9uJ07NJYKmph9fqlSIMtyB8VdbaiHJS1AWKsg-ftk0_rexu9DbxO55d2tU2oOWzvdh-5vtYBfsmKKdUfTsUbtZeZ7TvHqoi0qZlXvy9XG5WhRPbz2YDq-ng5HffJrgLywTKPwUI4oZi1Eyqo1whvPc0JRraqlMSjkqZArRUIZSakItf-EYR0YIklkyQQ-gky9zfQieSAy1JVKYWDKiTZIxwaS221RxkqTsCLqu1_P32hZj3nT4-O_sE9hyI1_Ls06hU6xKfWbxvFDn1UR-AqE-nds | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHi3iTQZGksaxEycjqqgKtAWhInWr7FwbyiNFVbrw9dhJaAExsFm2FNm-sc6xfe4xwJnwJUcSKJegQJdFqXLt9Z3rS5_pRBqIDm3ucH8QdR_Y9Sgc1eB8kQujlCrEZ8qzxeIuH6fp3B6VtWLrmpfwFVgNGWNhma21PFEx7IFW4P9cGr_EjASV1RDxk9ZF5759O7B6Lu5V3_rxqEqBKZ1N6H_1ppSSvHjzXHrpxy-jxv92dwuay-w9526BS9tQU9kObHwzHmyAmVU0MUXHbLarf8-xqlcHVV5oszJHvD5OZ5P86a0Jw87lsN11q2cT3InhArmbYEAxZSEKRpXm1nI-0jSJFDVkJqERSmQSUVOGQihCDYOJMAw05yQ1dILuQj2bZmoPHB5raloE16FgROk4ZZwJZRaqjEicsH1o2FGP30tjjHE14IO_q09hrTvs98a9q8HNIazbKJRirSOo57O5OjbonsuTIqifGm2hKA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+AFRICON&rft.atitle=Reduced+resolution+lane+detection+algorithm&rft.au=Li+Dang&rft.au=Tewolde%2C+Girma&rft.au=Xiaoyuan+Zhang&rft.au=Jaerock+Kwon&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2153-0033&rft.spage=1459&rft.epage=1464&rft_id=info:doi/10.1109%2FAFRCON.2017.8095697&rft.externalDocID=8095697 |