A variable splitting augmented Lagrangian approach to linear spectral unmixing

This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig's seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspec...

Full description

Saved in:
Bibliographic Details
Published in2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing pp. 1 - 4
Main Author Bioucas-Dias, J.M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424446865
1424446864
ISSN2158-6268
DOI10.1109/WHISPERS.2009.5289072

Cover

Abstract This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig's seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral vectors. This is a nonconvex optimization problem with convex constraints. In the proposed approach, the positivity constraints, forcing the spectral vectors to belong to the convex hull of the end member signatures, are replaced by soft constraints. The obtained problem is solved by a sequence of augmented Lagrangian optimizations. The resulting algorithm is very fast and able so solve problems far beyond the reach of the current state-of-the art algorithms. The effectiveness of SISAL is illustrated with simulated data.
AbstractList This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig's seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral vectors. This is a nonconvex optimization problem with convex constraints. In the proposed approach, the positivity constraints, forcing the spectral vectors to belong to the convex hull of the end member signatures, are replaced by soft constraints. The obtained problem is solved by a sequence of augmented Lagrangian optimizations. The resulting algorithm is very fast and able so solve problems far beyond the reach of the current state-of-the art algorithms. The effectiveness of SISAL is illustrated with simulated data.
Author Bioucas-Dias, J.M.
Author_xml – sequence: 1
  givenname: J.M.
  surname: Bioucas-Dias
  fullname: Bioucas-Dias, J.M.
  organization: Inst. de Telecomun., Tech. Univ. of Lisbon, Lisbon, Portugal
BookMark eNo1kM1KAzEUhSO2YFv7BCLkBabmd5IsS6lWKCpWcVnuzNyMkWk6ZKaib2_FejYfZ_GdxRmTQdxHJOSasxnnzN28re43T8vnzUww5mZaWMeMOCNjroRSKrdGnJOpM_a_53pARoJrm-Uit0My_vUcU8baCzLtug92jNJSWTkiD3P6CSlA0SDt2ib0fYg1hUO9w9hjRddQJ4h1gEihbdMeynfa72kTIkI6Glj2CRp6iLvwdTQvydBD0-H0xAl5vV2-LFbZ-vHufjFfZ4Eb3Weu8BZK8JVhBXdeVbKshFW516VDBkZ54a20ACWTjmnOKssRXZULVTiQSk7I1d9uQMRtm8IO0vf29I38Acl7V7M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WHISPERS.2009.5289072
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISBN 1424446872
9781424446872
EndPage 4
ExternalDocumentID 5289072
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
AAJGR
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-9bf8acafd70b19f4d3cd2846f5c9e0a74f2f838aac0390510d81ee9d624b9a343
IEDL.DBID RIE
ISBN 9781424446865
1424446864
ISSN 2158-6268
IngestDate Wed Aug 27 02:36:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009904788
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9bf8acafd70b19f4d3cd2846f5c9e0a74f2f838aac0390510d81ee9d624b9a343
PageCount 4
ParticipantIDs ieee_primary_5289072
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
PublicationTitleAbbrev WHISPERS
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453483
ssj0001344044
Score 1.9509207
Snippet This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Additive noise
Constraint optimization
Hyperspectral imaging
Hyperspectral unmixing
Lagrangian functions
Minimum volume simplex
Noise robustness
nonsmooth optimization
Solid modeling
Source separation
Telecommunications
Variable Splitting augmented Lagrangian
Vectors
Title A variable splitting augmented Lagrangian approach to linear spectral unmixing
URI https://ieeexplore.ieee.org/document/5289072
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mLnryx2b8nR48ysZoKe3RmC3T6LI4F3dbCm3nojIzwah_va8FZjQevAGBQJuG7-t77_seQqcs8IkKmfBiSaRHpYo8AGHqySAQBrYgwElcgeyA9cf0ahJOauhspYXRWrviM92yhy6XrxZJbkNl7dBmxSL44a5FnBVarVU8BagJoSVUuvgKsc53NqkMoMY94O280nVRxhmt7J7K87BU93R80b7vX46G3dtR4WZZvvRH9xUHPr1NdFN9dlFz8tjKs7iVfP5ydPzvuLZQ81vmh4crANtGNZ3uoPWyLfrDRwMNzvEb7KWtugq_Alt1NdJY5jPn5KnwtYQ70xmsMFx5k-NsgS1zlUvsRJxL-YTz9Hn-Dk820bjXvbvoe2UDBm8OrCLzRGy4TKRRkR93hKGKJArgjJkwEdqXETWB4YRLmfjE-nz5ine0FooFNBaSULKL6uki1XsI80gYYXwWKE2oSpRQnVCp2LrbKGCdch817LxMXwqPjWk5JQd_Xz5EG0VWxxbiHaF6tsz1MZCDLD5xq-IL4_6x9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2IHvDkDzD-tgePDsbade3RGMhQIEQgciPd2iJRh8HNqH-9bbdhNB68bcuWrU2z9_p933sfABfEc5HwCXMijriDuQgcDcLY4Z7HlN6CaE5iC2QHJJzgm6k_rYDLtRZGSmmLz2TDHNpcvljGmQmVNX2TFQv0D3fTxxj7uVprHVHR5AThAixthAUZ7zuTVtawRh3N3Gmp7MKEElwaPhXnfqHvabmseR92R8P23Sj3syxe-6P_ioWfzjbolx-eV508NrI0asSfvzwd_zuyHVD_FvrB4RrCdkFFJnugWjRGf_iogcEVfNO7aaOvgq-ar9oqacizufXyFLDH9Z3JXK8xWLqTw3QJDXflK2hlnCv-BLPkefGun6yDSac9vg6dogWDs9C8InVYpCiPuRKBG7WYwgLFQgMaUX7MpMsDrDxFEeU8dpFx-nIFbUnJBPFwxDjCaB9sJMtEHgBIA6aYcoknJMIiFky0fCEi428jNO_kh6Bm5mX2krtszIopOfr78jmohuN-b9brDm6PwVae4zFleSdgI11l8lRThTQ6syvkC2qntUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+First+Workshop+on+Hyperspectral+Image+and+Signal+Processing%3A+Evolution+in+Remote+Sensing&rft.atitle=A+variable+splitting+augmented+Lagrangian+approach+to+linear+spectral+unmixing&rft.au=Bioucas-Dias%2C+J.M.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424446865&rft.issn=2158-6268&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWHISPERS.2009.5289072&rft.externalDocID=5289072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-6268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-6268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-6268&client=summon