Predicting Computer Network Traffic: A Time Series Forecasting Approach Using DWT, ARIMA and RNN
This paper proposes the Discrete Wavelet Transform (DWT), Auto Regressive Integrated Moving Averages (ARIMA) model and Recurrent Neural Network (RNN) based technique for forecasting the computer network traffic. Computer network traffic is sampled on computer networking device connected to the inter...
Saved in:
Published in | 2018 Eleventh International Conference on Contemporary Computing (IC3) pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISBN | 1538668343 9781538668344 |
ISSN | 2572-6129 |
DOI | 10.1109/IC3.2018.8530608 |
Cover
Abstract | This paper proposes the Discrete Wavelet Transform (DWT), Auto Regressive Integrated Moving Averages (ARIMA) model and Recurrent Neural Network (RNN) based technique for forecasting the computer network traffic. Computer network traffic is sampled on computer networking device connected to the internet. At first, discrete wavelet transform is used to decompose the traffic data into non-linear (approximate) and linear (detailed) components. After that, detailed and approximate components are reconstructed using inverse DWT and predictions are made using Auto Regressive Moving Average (ARIMA) and Recurrent Neural Networks (RNN), respectively. Internet traffic is a time series which can be used to predict the future traffic trends in a computer network. Numerous computer network management tasks depend heavily on the information about the network traffic. This forecasting is very useful for numerous applications, such as congestion control, anomaly detection, and bandwidth allocation. Our method is easy to implement and computationally less expensive which can be easily applied at the data centers, improving the quality of service (QoS) and reducing the cost. |
---|---|
AbstractList | This paper proposes the Discrete Wavelet Transform (DWT), Auto Regressive Integrated Moving Averages (ARIMA) model and Recurrent Neural Network (RNN) based technique for forecasting the computer network traffic. Computer network traffic is sampled on computer networking device connected to the internet. At first, discrete wavelet transform is used to decompose the traffic data into non-linear (approximate) and linear (detailed) components. After that, detailed and approximate components are reconstructed using inverse DWT and predictions are made using Auto Regressive Moving Average (ARIMA) and Recurrent Neural Networks (RNN), respectively. Internet traffic is a time series which can be used to predict the future traffic trends in a computer network. Numerous computer network management tasks depend heavily on the information about the network traffic. This forecasting is very useful for numerous applications, such as congestion control, anomaly detection, and bandwidth allocation. Our method is easy to implement and computationally less expensive which can be easily applied at the data centers, improving the quality of service (QoS) and reducing the cost. |
Author | Madan, Rishabh Mangipudi, Partha Sarathi |
Author_xml | – sequence: 1 givenname: Rishabh surname: Madan fullname: Madan, Rishabh email: rishabh.madan@student.amity.edu organization: Amity School of Engineering and Technology, Amity University Noida, India – sequence: 2 givenname: Partha Sarathi surname: Mangipudi fullname: Mangipudi, Partha Sarathi email: psmangipudi@amity.edu organization: Amity School of Engineering and Technology, Amity University Noida, India |
BookMark | eNo1kMlOwzAYhM0m0Zbekbj4AUix43jjFgUKlUpAJRXH4tq_wUCTyAlCvD1bmcto9GnmMEO0Xzc1IHRMyYRSos9mBZukhKqJ4owIonbQWEtFOVNCKMbpLhqkXKaJoKneQ8N_kLFDNO66F0IIo1JynQ3Q410EF2wf6idcNJv2vYeIS-g_mviKq2i8D_Yc57gKG8D3EAN0eNpEsKb77eRtGxtjn_Gy-4kXD9Upzhezmxyb2uFFWR6hA2_eOhhvfYSW08uquE7mt1ezIp8ngUreJ1oyyNbGp8o60EJIy4DRb3nHneOwZmydeg_eWi4MCO2cksZmGkAKYhQboZO_3QAAqzaGjYmfq-1B7AtzqFh6 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IC3.2018.8530608 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781538668351 9781538668337 1538668351 1538668335 |
EISSN | 2572-6129 |
EndPage | 5 |
ExternalDocumentID | 8530608 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-973e4baf28cde9667c3e31111fd5dd5eb33b2ffefcc56ae69dd87ac49ee760a83 |
IEDL.DBID | RIE |
ISBN | 1538668343 9781538668344 |
IngestDate | Wed Aug 27 02:43:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-973e4baf28cde9667c3e31111fd5dd5eb33b2ffefcc56ae69dd87ac49ee760a83 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8530608 |
PublicationCentury | 2000 |
PublicationDate | 2018-August |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-August |
PublicationDecade | 2010 |
PublicationTitle | 2018 Eleventh International Conference on Contemporary Computing (IC3) |
PublicationTitleAbbrev | IC3 |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003177594 ssib048751324 ssj0002685691 |
Score | 2.1144505 |
Snippet | This paper proposes the Discrete Wavelet Transform (DWT), Auto Regressive Integrated Moving Averages (ARIMA) model and Recurrent Neural Network (RNN) based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | ARIMA Discrete wavelet transforms DWT Forecasting internet traffic Mathematical model neural network Neural networks prediction Predictive models RNN Telecommunication traffic time series Time series analysis |
Title | Predicting Computer Network Traffic: A Time Series Forecasting Approach Using DWT, ARIMA and RNN |
URI | https://ieeexplore.ieee.org/document/8530608 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4gJ06oYNwzB4-0FDpLx1uDGjChIQQiN5zOvCbGBAzLxV_vvC4YjQd76rTpNp2Zt33ve4TcMe50eMOZl_V46jGhAy8KtfR0PwuRwgqCLEdbJGI4Z88LvqiRziEXBgBy8Bn4uJvH8u3a7NFV1nWiJRCY2XskpSpytaqxg3p3r2Iex1W4LyJe8cBg28lJyZEKsIFzXIgoZGFJ-VS1WRXGDFR3NAgR9xX55TN_FF_JZc9Tk4yrty4gJ-_-fpf65vMXoeN_P-uYtL-z_OjkIL9OSA1Wp6RZlXmg5axvkdfJBqM5iI-mh7NJAR-nTtYhCcU9jSlmk1D0tsGWYsVPo7f5NXFJW05zeAJ9eJl1aDwdjWOqV5ZOk6RN5k-Ps8HQKwszeG9O29h5SobAUp31I2PB2UvSoCvVbZnl1nJnn4dpP8sgM4YLDUJZG0ltmAKQItBReEbqq_UKzgk1BlRgjUGaMLeWgFLArLsxc4amiZS8IC3ssOVHwb2xLPvq8u_DV6SBP60A6F2T-m6zhxunNOzS23y0fAH6srj_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHuSECsZve_DIYLC227wtKAGFhRCI3LBr3xJjMgyMi3-9ffvAaDy407plX13b9_V7v0fIHeNGh1ecWXGXRxYT0rY8R7qW7MUOUliBHWdoi1AMF-xpyZcV0trnwgBABj6DNu5msXy9Vjt0lXWMaLEFZvYecGNVuHm2Vjl6UPPultzjuA73hMdLJhhsG0npciQDrOEsF8JzmFOQPpVtVgYybb8z6juI_PLaxVN_lF_JpM-gTible-egk_f2Lo3a6vMXpeN_P-yINL_z_Oh0L8GOSQWSE1IvCz3QYt43yOt0g_EcREjT_dkwB5BTI-2QhuKeBhTzSSj622BLseanktvsmqAgLqcZQIE-vMxbNJiNJgGViaazMGySxeBx3h9aRWkG683oG6nluw6wSMY9T2kwFpOr0Jlqtlhzrbmx0J2oF8cQK8WFBOFr7blSMR_AFbb0nFNSTdYJnBGqFPi2VgqJwsxqAr4PTJsbM2NqKs93z0kDO2z1kbNvrIq-uvj78C05HM4n49V4FD5fkhr-wByud0Wq6WYH10aFSKObbOR8Aeg4vFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Eleventh+International+Conference+on+Contemporary+Computing+%28IC3%29&rft.atitle=Predicting+Computer+Network+Traffic%3A+A+Time+Series+Forecasting+Approach+Using+DWT%2C+ARIMA+and+RNN&rft.au=Madan%2C+Rishabh&rft.au=Mangipudi%2C+Partha+Sarathi&rft.date=2018-08-01&rft.pub=IEEE&rft.isbn=1538668343&rft.eissn=2572-6129&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIC3.2018.8530608&rft.externalDocID=8530608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538668344/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538668344/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538668344/sc.gif&client=summon&freeimage=true |