Transform domain LMS algorithms for sparse system identification
This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performa...
Saved in:
| Published in | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 3714 - 3717 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.03.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424442959 1424442958 |
| ISSN | 1520-6149 |
| DOI | 10.1109/ICASSP.2010.5495882 |
Cover
| Abstract | This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performance in sparse systems. Different from the existing algorithms, the adaptive filter coefficients are updated in the transform domain (TD) to reduce the eigenvalue spread of the input signal correlation matrix. Correspondingly, the l 1 norm constraint is applied to the TD filter coefficients. In this way, the TD zero-attracting LMS (TD-ZA-LMS) and TD reweighted-zero-attracting LMS (TD-RZA-LMS) algorithms result. Compared to ZA-LMS and RZA-LMS algorithms, the proposed TD-ZA-LMS and TD-RZA-LMS algorithms have been proven to have the same steady-state behavior, but achieve faster convergence rate with non-white system inputs. Effectiveness of the proposed algorithms is demonstrated through computer simulations. |
|---|---|
| AbstractList | This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performance in sparse systems. Different from the existing algorithms, the adaptive filter coefficients are updated in the transform domain (TD) to reduce the eigenvalue spread of the input signal correlation matrix. Correspondingly, the l 1 norm constraint is applied to the TD filter coefficients. In this way, the TD zero-attracting LMS (TD-ZA-LMS) and TD reweighted-zero-attracting LMS (TD-RZA-LMS) algorithms result. Compared to ZA-LMS and RZA-LMS algorithms, the proposed TD-ZA-LMS and TD-RZA-LMS algorithms have been proven to have the same steady-state behavior, but achieve faster convergence rate with non-white system inputs. Effectiveness of the proposed algorithms is demonstrated through computer simulations. |
| Author | Kun Shi Xiaoli Ma |
| Author_xml | – sequence: 1 surname: Kun Shi fullname: Kun Shi email: k-shi@ti.com organization: Texas Instrum., Dallas, TX, USA – sequence: 2 surname: Xiaoli Ma fullname: Xiaoli Ma email: xiaoli@ece.gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Tech, Atlanta, GA, USA |
| BookMark | eNpVkMFKAzEYhCNWsK19gl7yAlv_ZP9skptStAorClvPJdlNNNLNlmQvfXsX7MXTMPPBMMyCzOIQHSFrBhvGQN-_bh-b5mPDYQoEaqEUvyIrLRVDjohcV9X1Py_0jMyZ4FBUDPUtWeT8AwBKopqTh30yMfsh9bQbehMird8aao5fQwrjd5_phGg-mZQdzec8up6GzsUx-NCaMQzxjtx4c8xuddEl-Xx-2m9fivp9N02ti8CkGAvNWckleCNliwJLUMbbjlWOGy9U61vpRVdapRC8dmicEMpayzx6i52EcknWf73BOXc4pdCbdD5cDih_AenqT7s |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP.2010.5495882 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781424442966 1424442966 |
| EndPage | 3717 |
| ExternalDocumentID | 5495882 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-9213270fa77c454308afbd16e2af58cfc7f5d3b8840f9e4ae558bbb1f4fb4d703 |
| IEDL.DBID | RIE |
| ISBN | 9781424442959 1424442958 |
| ISSN | 1520-6149 |
| IngestDate | Wed Aug 27 02:43:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-9213270fa77c454308afbd16e2af58cfc7f5d3b8840f9e4ae558bbb1f4fb4d703 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5495882 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-March |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 ssj0000452700 |
| Score | 1.8391801 |
| Snippet | This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3714 |
| SubjectTerms | Adaptive algorithm Adaptive filters Computer simulation Convergence Cost function Eigenvalues and eigenfunctions l 1 norm least mean square (LMS) Least squares approximation Sparse matrices sparsity Steady-state System identification |
| Title | Transform domain LMS algorithms for sparse system identification |
| URI | https://ieeexplore.ieee.org/document/5495882 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbR52Ym-giqogiiq1lbpVfkIETVCbLvx6bCcpDzGwJc7gxLHuvvN99x0AVzFjxJjGwIuQRB4SgfAMOPI9SbQiBrAHoWsGM3qKhzP0MMfzBrje1sIopRz5THXtpcvly1xs7FFZz8Qy2CDCJmgmJC5rtbbnKVYa3EnNVVaYJK5zlnFPNjxCtC7qMvYXk1rrqbqnlRxR4NPeff92MhmXnK9qvh-NV5zfGeyBUf3GJd3ktbspeFd8_BJz_O8n7YPOV4UfHG991wFoqOwQ7H4TJ2yDm2mNaaHMlyzN4ONoAtnbc75Ki5flGppH0Nij1VrBUg8aprLiHrnf3QGzwd20P_SqfgteakBE4dHQhKaJr1mSCIRR5BOmuQxiFTKNidAi0VhGnJiYUFOFmMKYcM4DjTRH0piOI9DK8kwdA8hswk5HWOuAIcEoMzAylMKOCEpVcALadi0W76WkxqJahtO_h8_ATpm0t9Svc9AqVht1YbBAwS_dJvgEnKSsdA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHC2y7S3dvGiIBpYQESLiRfWqjtAbKxV_v9oWPePDWbg_bbjcz3-x88w0AN23OqTWNyPGwwg6WSDoWHLUcRY2mFrAjN2sGEwzbvSl-nJFZBdxuamG01hn5TDfSyyyXr2K5To_KmjaWIRYRboFtgjEmebXW5kQlFQfPxOYKO0z9rHeWdVBpgIRZWdZlLTChpdpTcc8KQSLUYs1-5348HuWsr2LGH61XMs_T3QdB-c454eS1sU5EQ378knP870cdgPpXjR8cbbzXIajo6AjsfZMnrIG7SYlqoYoXPIzgIBhD_vYcL8PkZbGC9hG0Fmm50jBXhIahKthH2Q-vg2n3YdLpOUXHBSe0MCJxmGuDU79luO9LTLDXotwIhdra5YZQaaRviPIEtVGhYRpzTQgVQiCDjcDKGo9jUI3iSJ8AyNOUnfGIMYhjyRm3QNJVMh2RjGl0CmrpWszfc1GNebEMZ38PX4Od3iQYzAf94dM52M1T-CkR7AJUk-VaX1pkkIirbEN8AttRr8E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Transform+domain+LMS+algorithms+for+sparse+system+identification&rft.au=Kun+Shi&rft.au=Xiaoli+Ma&rft.date=2010-03-01&rft.pub=IEEE&rft.isbn=9781424442959&rft.issn=1520-6149&rft.spage=3714&rft.epage=3717&rft_id=info:doi/10.1109%2FICASSP.2010.5495882&rft.externalDocID=5495882 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |