Transform domain LMS algorithms for sparse system identification

This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performa...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 3714 - 3717
Main Authors Kun Shi, Xiaoli Ma
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2010
Subjects
Online AccessGet full text
ISBN9781424442959
1424442958
ISSN1520-6149
DOI10.1109/ICASSP.2010.5495882

Cover

Abstract This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performance in sparse systems. Different from the existing algorithms, the adaptive filter coefficients are updated in the transform domain (TD) to reduce the eigenvalue spread of the input signal correlation matrix. Correspondingly, the l 1 norm constraint is applied to the TD filter coefficients. In this way, the TD zero-attracting LMS (TD-ZA-LMS) and TD reweighted-zero-attracting LMS (TD-RZA-LMS) algorithms result. Compared to ZA-LMS and RZA-LMS algorithms, the proposed TD-ZA-LMS and TD-RZA-LMS algorithms have been proven to have the same steady-state behavior, but achieve faster convergence rate with non-white system inputs. Effectiveness of the proposed algorithms is demonstrated through computer simulations.
AbstractList This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the colored inputs. The l 1 norm penalty on the filter coefficients is incorporated into the quadratic LMS cost function to improve the LMS performance in sparse systems. Different from the existing algorithms, the adaptive filter coefficients are updated in the transform domain (TD) to reduce the eigenvalue spread of the input signal correlation matrix. Correspondingly, the l 1 norm constraint is applied to the TD filter coefficients. In this way, the TD zero-attracting LMS (TD-ZA-LMS) and TD reweighted-zero-attracting LMS (TD-RZA-LMS) algorithms result. Compared to ZA-LMS and RZA-LMS algorithms, the proposed TD-ZA-LMS and TD-RZA-LMS algorithms have been proven to have the same steady-state behavior, but achieve faster convergence rate with non-white system inputs. Effectiveness of the proposed algorithms is demonstrated through computer simulations.
Author Kun Shi
Xiaoli Ma
Author_xml – sequence: 1
  surname: Kun Shi
  fullname: Kun Shi
  email: k-shi@ti.com
  organization: Texas Instrum., Dallas, TX, USA
– sequence: 2
  surname: Xiaoli Ma
  fullname: Xiaoli Ma
  email: xiaoli@ece.gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Tech, Atlanta, GA, USA
BookMark eNpVkMFKAzEYhCNWsK19gl7yAlv_ZP9skptStAorClvPJdlNNNLNlmQvfXsX7MXTMPPBMMyCzOIQHSFrBhvGQN-_bh-b5mPDYQoEaqEUvyIrLRVDjohcV9X1Py_0jMyZ4FBUDPUtWeT8AwBKopqTh30yMfsh9bQbehMird8aao5fQwrjd5_phGg-mZQdzec8up6GzsUx-NCaMQzxjtx4c8xuddEl-Xx-2m9fivp9N02ti8CkGAvNWckleCNliwJLUMbbjlWOGy9U61vpRVdapRC8dmicEMpayzx6i52EcknWf73BOXc4pdCbdD5cDih_AenqT7s
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2010.5495882
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424442966
1424442966
EndPage 3717
ExternalDocumentID 5495882
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-9213270fa77c454308afbd16e2af58cfc7f5d3b8840f9e4ae558bbb1f4fb4d703
IEDL.DBID RIE
ISBN 9781424442959
1424442958
ISSN 1520-6149
IngestDate Wed Aug 27 02:43:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9213270fa77c454308afbd16e2af58cfc7f5d3b8840f9e4ae558bbb1f4fb4d703
PageCount 4
ParticipantIDs ieee_primary_5495882
PublicationCentury 2000
PublicationDate 2010-March
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-March
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
ssj0000452700
Score 1.8391801
Snippet This paper proposes a new adaptive algorithm to improve the least mean square (LMS) performance for the sparse system identification in the presence of the...
SourceID ieee
SourceType Publisher
StartPage 3714
SubjectTerms Adaptive algorithm
Adaptive filters
Computer simulation
Convergence
Cost function
Eigenvalues and eigenfunctions
l 1 norm
least mean square (LMS)
Least squares approximation
Sparse matrices
sparsity
Steady-state
System identification
Title Transform domain LMS algorithms for sparse system identification
URI https://ieeexplore.ieee.org/document/5495882
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbR52Ym-giqogiiq1lbpVfkIETVCbLvx6bCcpDzGwJc7gxLHuvvN99x0AVzFjxJjGwIuQRB4SgfAMOPI9SbQiBrAHoWsGM3qKhzP0MMfzBrje1sIopRz5THXtpcvly1xs7FFZz8Qy2CDCJmgmJC5rtbbnKVYa3EnNVVaYJK5zlnFPNjxCtC7qMvYXk1rrqbqnlRxR4NPeff92MhmXnK9qvh-NV5zfGeyBUf3GJd3ktbspeFd8_BJz_O8n7YPOV4UfHG991wFoqOwQ7H4TJ2yDm2mNaaHMlyzN4ONoAtnbc75Ki5flGppH0Nij1VrBUg8aprLiHrnf3QGzwd20P_SqfgteakBE4dHQhKaJr1mSCIRR5BOmuQxiFTKNidAi0VhGnJiYUFOFmMKYcM4DjTRH0piOI9DK8kwdA8hswk5HWOuAIcEoMzAylMKOCEpVcALadi0W76WkxqJahtO_h8_ATpm0t9Svc9AqVht1YbBAwS_dJvgEnKSsdA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHC2y7S3dvGiIBpYQESLiRfWqjtAbKxV_v9oWPePDWbg_bbjcz3-x88w0AN23OqTWNyPGwwg6WSDoWHLUcRY2mFrAjN2sGEwzbvSl-nJFZBdxuamG01hn5TDfSyyyXr2K5To_KmjaWIRYRboFtgjEmebXW5kQlFQfPxOYKO0z9rHeWdVBpgIRZWdZlLTChpdpTcc8KQSLUYs1-5348HuWsr2LGH61XMs_T3QdB-c454eS1sU5EQ378knP870cdgPpXjR8cbbzXIajo6AjsfZMnrIG7SYlqoYoXPIzgIBhD_vYcL8PkZbGC9hG0Fmm50jBXhIahKthH2Q-vg2n3YdLpOUXHBSe0MCJxmGuDU79luO9LTLDXotwIhdra5YZQaaRviPIEtVGhYRpzTQgVQiCDjcDKGo9jUI3iSJ8AyNOUnfGIMYhjyRm3QNJVMh2RjGl0CmrpWszfc1GNebEMZ38PX4Od3iQYzAf94dM52M1T-CkR7AJUk-VaX1pkkIirbEN8AttRr8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Transform+domain+LMS+algorithms+for+sparse+system+identification&rft.au=Kun+Shi&rft.au=Xiaoli+Ma&rft.date=2010-03-01&rft.pub=IEEE&rft.isbn=9781424442959&rft.issn=1520-6149&rft.spage=3714&rft.epage=3717&rft_id=info:doi/10.1109%2FICASSP.2010.5495882&rft.externalDocID=5495882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon