Quantum Algorithm for Polynomial Root Finding Problem
Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching probl...
Saved in:
| Published in | 2014 Tenth International Conference on Computational Intelligence and Security pp. 469 - 473 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.11.2014
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/CIS.2014.40 |
Cover
| Abstract | Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching problem. Through exploiting the two quantum algorithms, we propose a quantum algorithm for solving a new cryptography problem -- polynomial root finding problem, which could be used to design a cryptosystem. The algorithm will take O(rootM/t) steps for finding one of the t solutions to the problem, where M is the modular of the equation. The success rate of the algorithm is a constant and the cost of the algorithm depends on the calculations of modular exponentiation and the number of iterations. |
|---|---|
| AbstractList | Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching problem. Through exploiting the two quantum algorithms, we propose a quantum algorithm for solving a new cryptography problem -- polynomial root finding problem, which could be used to design a cryptosystem. The algorithm will take O(rootM/t) steps for finding one of the t solutions to the problem, where M is the modular of the equation. The success rate of the algorithm is a constant and the cost of the algorithm depends on the calculations of modular exponentiation and the number of iterations. |
| Author | Xu, Maozhi Su, Shenghui Sun, Guodong |
| Author_xml | – sequence: 1 givenname: Guodong surname: Sun fullname: Sun, Guodong email: sgd-150@163.com organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China – sequence: 2 givenname: Shenghui surname: Su fullname: Su, Shenghui organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China – sequence: 3 givenname: Maozhi surname: Xu fullname: Xu, Maozhi email: Mzxu@pku.com organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China |
| BookMark | eNotzE9LwzAYgPEICursyaOXfIHWvMmbvslxFOcGA-e_80jabAbaRNrusG-voKfn8IPnll2mnAJj9yAqAGEfm817JQVgheKCFZYMIFlLqBRds2KaoheyphprgzdMv55cmk8DX_bHPMb5a-CHPPJd7s8pD9H1_C3nma9i6mI68t2YfR-GO3Z1cP0Uiv8u2Ofq6aNZl9uX502z3JYRSM-l6aQXBkBh61uvAb00mhR25KRRXQhtTdr9MhjfUusDWvK-A-WD0lJYtWAPf98YQth_j3Fw43lPAmqLQv0AfnREtg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CIS.2014.40 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library (LUT) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781479974337 147997434X 1479974331 9781479974344 |
| EndPage | 473 |
| ExternalDocumentID | 7016940 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i175t-8d2b081134cbcb514b285734d7a283deec675a13418bc7cbe497bbd13be352093 |
| IEDL.DBID | RIE |
| IngestDate | Wed Dec 20 05:19:54 EST 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-8d2b081134cbcb514b285734d7a283deec675a13418bc7cbe497bbd13be352093 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7016940 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Nov. |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 Tenth International Conference on Computational Intelligence and Security |
| PublicationTitleAbbrev | CIS |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026764684 |
| Score | 1.6447203 |
| Snippet | Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 469 |
| SubjectTerms | Algorithm design and analysis Cryptography Polynomial root finding problem Polynomials Quantum computing Quantum counting Quantum mechanics Quantum searching Search problems Signature algorithm |
| Title | Quantum Algorithm for Polynomial Root Finding Problem |
| URI | https://ieeexplore.ieee.org/document/7016940 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbGRhJ2tiOnYyooipIReWjUrcqti9Q0TYVSgb49dwlbUGIgc2KZDn-iN475947xi6RAaQIw8KXGcaq0uCXniLL921inYEEOLckFB7eq8FY3k2iSYNdbbUwAFAln0FAzepfvsttSVdlHU3WIRID9B0dq1qrtTk7XGklVSzXErywm3R6t0-UuiUDutj4UTqlQo7-HhtuxqwTRt6CsjCB_fxlx_jfl9pn7W-Nnjfaos8Ba8CyxaKHEleqXHjX85ccw_7XhYek1Bvl8w-SH6dz7zHPC68_q7Qs1J-qybTZuH_z3Bv468II_gzRvvBjxw1CeSikNdYg5TE8jrSQTqfIFhyAVbQFCFCxsdoakIk2xoXCgKC0F3HImst8CUfMS8LM2TBTykAqyfxdk5U4dJPM8khwfcxaNOXpqva-mK5ne_L341O2Sytea_XOWLN4L-EcQbswF9VufQF2QJco |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJDRi_7cGjLXS77bZHQySgQFAh4Ua6u1MlfNSY9qC_3pkW0BgP3jZNNtv9aN6b7bw3jF0jA4gRhj1bJBirCoVfeows39aRNgoi4FyTULg_CDpjcT_xJxV2s9XCAECRfAYONYt_-SbVOV2VNSRZhwgM0Hd8IYRfqrU2p4cHMhBBKNYiPLcZNVrdZ0reEg5dbfwonlJgR3uf9TejlikjcyfPlKM_fxky_ve1Dlj9W6VnDbf4c8gqsKox_zHHtcqX1u3iJcXA_3VpIS21hunigwTI8cJ6StPMas8KNQv1p3oydTZu341aHXtdGsGeId5ndmi4QjB3PaGVVkh6FA996QkjY-QLBkAHtAkIUaHSUisQkVTKuJ4CjxJfvCNWXaUrOGZW5CZGu0kQKIgF2b9LMhOHZpRo7ntcnrAaTXn6VrpfTNezPf378RXb7Yz6vWmvO3g4Y3u0-qVy75xVs_ccLhDCM3VZ7NwXlI-adQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Tenth+International+Conference+on+Computational+Intelligence+and+Security&rft.atitle=Quantum+Algorithm+for+Polynomial+Root+Finding+Problem&rft.au=Sun%2C+Guodong&rft.au=Su%2C+Shenghui&rft.au=Xu%2C+Maozhi&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=469&rft.epage=473&rft_id=info:doi/10.1109%2FCIS.2014.40&rft.externalDocID=7016940 |