Quantum Algorithm for Polynomial Root Finding Problem

Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching probl...

Full description

Saved in:
Bibliographic Details
Published in2014 Tenth International Conference on Computational Intelligence and Security pp. 469 - 473
Main Authors Sun, Guodong, Su, Shenghui, Xu, Maozhi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2014
Subjects
Online AccessGet full text
DOI10.1109/CIS.2014.40

Cover

Abstract Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching problem. Through exploiting the two quantum algorithms, we propose a quantum algorithm for solving a new cryptography problem -- polynomial root finding problem, which could be used to design a cryptosystem. The algorithm will take O(rootM/t) steps for finding one of the t solutions to the problem, where M is the modular of the equation. The success rate of the algorithm is a constant and the cost of the algorithm depends on the calculations of modular exponentiation and the number of iterations.
AbstractList Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem in the square root time of exhaustive search. Brassard, Hoyer, Tapp's algorithm counts the number of solutions for a searching problem. Through exploiting the two quantum algorithms, we propose a quantum algorithm for solving a new cryptography problem -- polynomial root finding problem, which could be used to design a cryptosystem. The algorithm will take O(rootM/t) steps for finding one of the t solutions to the problem, where M is the modular of the equation. The success rate of the algorithm is a constant and the cost of the algorithm depends on the calculations of modular exponentiation and the number of iterations.
Author Xu, Maozhi
Su, Shenghui
Sun, Guodong
Author_xml – sequence: 1
  givenname: Guodong
  surname: Sun
  fullname: Sun, Guodong
  email: sgd-150@163.com
  organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China
– sequence: 2
  givenname: Shenghui
  surname: Su
  fullname: Su, Shenghui
  organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China
– sequence: 3
  givenname: Maozhi
  surname: Xu
  fullname: Xu, Maozhi
  email: Mzxu@pku.com
  organization: Coll. of Comput. Sci., Beijing Univ. of Technol., Beijing, China
BookMark eNotzE9LwzAYgPEICursyaOXfIHWvMmbvslxFOcGA-e_80jabAbaRNrusG-voKfn8IPnll2mnAJj9yAqAGEfm817JQVgheKCFZYMIFlLqBRds2KaoheyphprgzdMv55cmk8DX_bHPMb5a-CHPPJd7s8pD9H1_C3nma9i6mI68t2YfR-GO3Z1cP0Uiv8u2Ofq6aNZl9uX502z3JYRSM-l6aQXBkBh61uvAb00mhR25KRRXQhtTdr9MhjfUusDWvK-A-WD0lJYtWAPf98YQth_j3Fw43lPAmqLQv0AfnREtg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIS.2014.40
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479974337
147997434X
1479974331
9781479974344
EndPage 473
ExternalDocumentID 7016940
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-8d2b081134cbcb514b285734d7a283deec675a13418bc7cbe497bbd13be352093
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:54 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-8d2b081134cbcb514b285734d7a283deec675a13418bc7cbe497bbd13be352093
PageCount 5
ParticipantIDs ieee_primary_7016940
PublicationCentury 2000
PublicationDate 2014-Nov.
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationTitle 2014 Tenth International Conference on Computational Intelligence and Security
PublicationTitleAbbrev CIS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764684
Score 1.6447203
Snippet Quantum computation is a new computing model based on fundamental quantum mechanical principle. Grover's algorithm finds the solution for a searching problem...
SourceID ieee
SourceType Publisher
StartPage 469
SubjectTerms Algorithm design and analysis
Cryptography
Polynomial root finding problem
Polynomials
Quantum computing
Quantum counting
Quantum mechanics
Quantum searching
Search problems
Signature algorithm
Title Quantum Algorithm for Polynomial Root Finding Problem
URI https://ieeexplore.ieee.org/document/7016940
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbGRhJ2tiOnYyooipIReWjUrcqti9Q0TYVSgb49dwlbUGIgc2KZDn-iN475947xi6RAaQIw8KXGcaq0uCXniLL921inYEEOLckFB7eq8FY3k2iSYNdbbUwAFAln0FAzepfvsttSVdlHU3WIRID9B0dq1qrtTk7XGklVSzXErywm3R6t0-UuiUDutj4UTqlQo7-HhtuxqwTRt6CsjCB_fxlx_jfl9pn7W-Nnjfaos8Ba8CyxaKHEleqXHjX85ccw_7XhYek1Bvl8w-SH6dz7zHPC68_q7Qs1J-qybTZuH_z3Bv468II_gzRvvBjxw1CeSikNdYg5TE8jrSQTqfIFhyAVbQFCFCxsdoakIk2xoXCgKC0F3HImst8CUfMS8LM2TBTykAqyfxdk5U4dJPM8khwfcxaNOXpqva-mK5ne_L341O2Sytea_XOWLN4L-EcQbswF9VufQF2QJco
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJDRi_7cGjLXS77bZHQySgQFAh4Ua6u1MlfNSY9qC_3pkW0BgP3jZNNtv9aN6b7bw3jF0jA4gRhj1bJBirCoVfeows39aRNgoi4FyTULg_CDpjcT_xJxV2s9XCAECRfAYONYt_-SbVOV2VNSRZhwgM0Hd8IYRfqrU2p4cHMhBBKNYiPLcZNVrdZ0reEg5dbfwonlJgR3uf9TejlikjcyfPlKM_fxky_ve1Dlj9W6VnDbf4c8gqsKox_zHHtcqX1u3iJcXA_3VpIS21hunigwTI8cJ6StPMas8KNQv1p3oydTZu341aHXtdGsGeId5ndmi4QjB3PaGVVkh6FA996QkjY-QLBkAHtAkIUaHSUisQkVTKuJ4CjxJfvCNWXaUrOGZW5CZGu0kQKIgF2b9LMhOHZpRo7ntcnrAaTXn6VrpfTNezPf378RXb7Yz6vWmvO3g4Y3u0-qVy75xVs_ccLhDCM3VZ7NwXlI-adQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Tenth+International+Conference+on+Computational+Intelligence+and+Security&rft.atitle=Quantum+Algorithm+for+Polynomial+Root+Finding+Problem&rft.au=Sun%2C+Guodong&rft.au=Su%2C+Shenghui&rft.au=Xu%2C+Maozhi&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=469&rft.epage=473&rft_id=info:doi/10.1109%2FCIS.2014.40&rft.externalDocID=7016940