A Svm-Based Algorithm for Automatic Species Classification of a Marine Diatom Genus Coscinodiscus Ehrenberg

Coscinodiscus Ehrenberg is a large and ecologically important diatom genus with plentiful species in marine phytoplankton and with a variety of round shapes and ornamentation. These properties can be measured by computer image pre-segmentation and feature extraction with threshold methods. However,...

Full description

Saved in:
Bibliographic Details
Published in2010 4th International Conference on Bioinformatics and Biomedical Engineering pp. 1 - 6
Main Authors Luo, Jinfei, Luo, Qiaoqi, Gao, Yahui, Chen, Changping, Liang, Junrong, Yang, Chenhui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN9781424447121
1424447127
ISSN2151-7614
DOI10.1109/ICBBE.2010.5515840

Cover

Abstract Coscinodiscus Ehrenberg is a large and ecologically important diatom genus with plentiful species in marine phytoplankton and with a variety of round shapes and ornamentation. These properties can be measured by computer image pre-segmentation and feature extraction with threshold methods. However, it proves to be complicated task because of the high spatial variability of ornamentation properties. Researchers have shown a Teach-program and a number of library functions operating on sample image lists (SIL's) and operating on classifiers (CF's) to solve the problem. In this paper, we present Coscinodiscus Ehrenberg ornamentation classifier algorithm called support vector machines (SVMs) to derive a new set of SIL's and CF's. The principal purpose of SVMs is Coscinodiscus Ehrenberg images pattern recognition approach. A pattern is in this context always the SIL's contained in a sub-rectangle of some given (possibly larger) image. For the same classifier this sub-rectangle must always have the same dimensions, while the query image to be searched may be arbitrarily large. The training is done by preparing SIL's for the pattern taxa in question and feeding them to CF's created. Our classifier generation with preprocessing code optimization achieves a AAAAA preprocessing code, a 0.981 learning success, a 100% computational complexity. Train with SIL's achieves 212 samples, 17 taxa, a 0.472% error rate and Test with Query image searching achieves 253 samples, 17 taxa, a 15.81% error rate. The experiments demonstrate that the proposed method is very robust to the threshold segmentation and ornamentation feature extraction of Coscinodiscus Ehrenberg images, and is effective and useful for species classification of Coscinodiscus Ehrenberg.
AbstractList Coscinodiscus Ehrenberg is a large and ecologically important diatom genus with plentiful species in marine phytoplankton and with a variety of round shapes and ornamentation. These properties can be measured by computer image pre-segmentation and feature extraction with threshold methods. However, it proves to be complicated task because of the high spatial variability of ornamentation properties. Researchers have shown a Teach-program and a number of library functions operating on sample image lists (SIL's) and operating on classifiers (CF's) to solve the problem. In this paper, we present Coscinodiscus Ehrenberg ornamentation classifier algorithm called support vector machines (SVMs) to derive a new set of SIL's and CF's. The principal purpose of SVMs is Coscinodiscus Ehrenberg images pattern recognition approach. A pattern is in this context always the SIL's contained in a sub-rectangle of some given (possibly larger) image. For the same classifier this sub-rectangle must always have the same dimensions, while the query image to be searched may be arbitrarily large. The training is done by preparing SIL's for the pattern taxa in question and feeding them to CF's created. Our classifier generation with preprocessing code optimization achieves a AAAAA preprocessing code, a 0.981 learning success, a 100% computational complexity. Train with SIL's achieves 212 samples, 17 taxa, a 0.472% error rate and Test with Query image searching achieves 253 samples, 17 taxa, a 15.81% error rate. The experiments demonstrate that the proposed method is very robust to the threshold segmentation and ornamentation feature extraction of Coscinodiscus Ehrenberg images, and is effective and useful for species classification of Coscinodiscus Ehrenberg.
Author Luo, Qiaoqi
Yang, Chenhui
Luo, Jinfei
Chen, Changping
Gao, Yahui
Liang, Junrong
Author_xml – sequence: 1
  givenname: Jinfei
  surname: Luo
  fullname: Luo, Jinfei
  organization: Sch. of Life Sci., Xiamen Univ., Xiamen, China
– sequence: 2
  givenname: Qiaoqi
  surname: Luo
  fullname: Luo, Qiaoqi
  organization: Sch. of Life Sci., Xiamen Univ., Xiamen, China
– sequence: 3
  givenname: Yahui
  surname: Gao
  fullname: Gao, Yahui
  email: gaoyh@xmu.edu.cn
  organization: Sch. of Life Sci., Xiamen Univ., Xiamen, China
– sequence: 4
  givenname: Changping
  surname: Chen
  fullname: Chen, Changping
  organization: Sch. of Life Sci., Xiamen Univ., Xiamen, China
– sequence: 5
  givenname: Junrong
  surname: Liang
  fullname: Liang, Junrong
  organization: Sch. of Life Sci., Xiamen Univ., Xiamen, China
– sequence: 6
  givenname: Chenhui
  surname: Yang
  fullname: Yang, Chenhui
  email: chyang@xmu.edu.cn
  organization: Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen, China
BookMark eNpVkMFOAjEYhGuEREFeQC99gcW2227b47IikmA8oGfSdv9Cld2S7WLi27uJXDxNvslkkpkJGrWxBYTuKZlTSvTjuloslnNGBhaCCsXJFZppqShnnHNJc3X9jxkdoVtGBc1kQfkYTRghWhNBVXGDZil9EjJ0Sa21vEVfJd5-N9nCJKhxedzHLvSHBvvY4fLcx8b0weHtCVyAhKujSSn44AY3tjh6bPCr6UIL-CmYIY1X0J6HXEwutLEOyQ20PHTQWuj2d2jszTHB7KJT9PG8fK9ess3bal2VmyxQKfpMWZVL6SCXtfPeeOUpKWoyLGDSOutrL6zlVhagfeE8zS0wnzuihGGaC51P0cNfbwCA3akLjel-dpfv8l8INmEB
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBBE.2010.5515840
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9781424447138
1424447135
EndPage 6
ExternalDocumentID 5515840
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-8b8377ce37dcffaf8f106d090527bcbfdf5bb4b76e9f6cf13be2f3c085a294593
IEDL.DBID RIE
ISBN 9781424447121
1424447127
ISSN 2151-7614
IngestDate Wed Aug 27 05:29:17 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009905186
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-8b8377ce37dcffaf8f106d090527bcbfdf5bb4b76e9f6cf13be2f3c085a294593
PageCount 6
ParticipantIDs ieee_primary_5515840
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 4th International Conference on Bioinformatics and Biomedical Engineering
PublicationTitleAbbrev ICBBE
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079997
ssj0000452553
Score 1.4406085
Snippet Coscinodiscus Ehrenberg is a large and ecologically important diatom genus with plentiful species in marine phytoplankton and with a variety of round shapes...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational complexity
Error analysis
Feature extraction
Libraries
Pattern recognition
Robustness
Shape
Support vector machine classification
Support vector machines
Testing
Title A Svm-Based Algorithm for Automatic Species Classification of a Marine Diatom Genus Coscinodiscus Ehrenberg
URI https://ieeexplore.ieee.org/document/5515840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1zIPjkxyZ-kwcf7dbPpHnc5uYUJoIO9jaSNFGZa2W2gv56b9J2ovjgW1MKbZPSc-_NOecidE6pKz3iK4ckAhIURrgjPEEdV8UQJMmYcWnqHZNbMp6GN7No1kAXay2MUsqSz1THHNq9_CSThSmVdQHdAS8hQd-gMSm1Wut6irEGjyrosfUVl0LsY9TSBtQcyNbDWtcF_2Of1nZP1dirBTUu614P-v1hyfqq7vij9YpFntE2mtTPXBJOFp0iFx35-cvO8b8vtYPa3xo_fLdGr13UUOke2ixbU3600KKH79-XTh9ALsG9l8ds9Zw_LTGEuLhX5Jk1esW2eb16w7azpuEc2WXGmcYcT7jRFeJLWPpsia9UWsB1xjkzzYwSGEZDw_Qz9LI2mo6GD4OxUzVmcJ4h2sidWEBaS6UKaCK15jrWkFgmLnMjnwopdKIjIUJBiWKaSO0FQvk6kBDdcZ-FEQv2UTPNUnWAMPM4JyFnRAU8pFQxkgQa1oOYTmUBDQ5Ry0zZ_LX03phXs3X09-ljtFXu7psqyQlq5qtCnULQkIsz-7V8Ad6MueQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1DEX3yG7_Ng4929iNNlsdtTjfdRFDBt5GkiY65VmYr6K_3Ju0mig--NaXQNik9996ccy5CJ4z5KqCh9mgiIUHhVHgykMzzdQOCJNXgQtl6x-CGdh_I1WP8WEOncy2M1tqRz3TdHrq9_CRThS2VnQG6A15Cgr4YE0LiUq01r6hYc_C4Ah9XYfEZRD9WL21hzYN8ncyUXfBHDtnM8KkaBzNJjc_Peu1Wq1Pyvqp7_mi-4rDnYhUNZk9dUk7G9SKXdfX5y9Dxv6-1hra-VX74do5f66im0w20VDan_NhE4ya-e594LYC5BDdfnrLpKH-eYAhycbPIM2f1il37ev2GXW9NyzpyC40zgwUeCKssxOew-NkEX-q0gOusd2aaWS0wjDqW62cJZlvo4aJz3-56VWsGbwTxRu41JCS2TOmIJcoYYRoGUsvE534cMqmkSUwsJZGMam6oMkEkdWgiBfGdCDmJebSNFtIs1TsI80AISgSnOhKEMc1pEhlYD2p7lUUs2kWbdsqGr6X7xrCarb2_Tx-j5e79oD_s926u99FKuddvayYHaCGfFvoQQohcHrkv5wvPa70x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+4th+International+Conference+on+Bioinformatics+and+Biomedical+Engineering&rft.atitle=A+Svm-Based+Algorithm+for+Automatic+Species+Classification+of+a+Marine+Diatom+Genus+Coscinodiscus+Ehrenberg&rft.au=Luo%2C+Jinfei&rft.au=Luo%2C+Qiaoqi&rft.au=Gao%2C+Yahui&rft.au=Chen%2C+Changping&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424447121&rft.issn=2151-7614&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICBBE.2010.5515840&rft.externalDocID=5515840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2151-7614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2151-7614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2151-7614&client=summon