A new unsupervised image segmentation algorithm based on deterministic annealing EM
A new unsupervised image segmentation algorithm based on deterministic annealing EM (DAEM) is proposed in this paper. The method is based on maximum likelihood (ML) estimation. Image is considered as a mixture of multi-variant normal densities and the number of densities is assumed to know. In order...
Saved in:
| Published in | IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003 Vol. 1; pp. 600 - 604 vol.1 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
2003
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 078037925X 9780780379251 |
| DOI | 10.1109/RISSP.2003.1285642 |
Cover
| Abstract | A new unsupervised image segmentation algorithm based on deterministic annealing EM (DAEM) is proposed in this paper. The method is based on maximum likelihood (ML) estimation. Image is considered as a mixture of multi-variant normal densities and the number of densities is assumed to know. In order to obtain the parameters of densities, deterministic annealing EM algorithm is introduced. In DAEM algorithm, the EM process is reformulated as the problem of minimizing the thermodynamic free energy by using a statistical mechanics analogy. Thus, The DAEM algorithm can overcome the local maximize problem of general EM algorithm. The proposed method is successfully applied to image segmentation experiments. |
|---|---|
| AbstractList | A new unsupervised image segmentation algorithm based on deterministic annealing EM (DAEM) is proposed in this paper. The method is based on maximum likelihood (ML) estimation. Image is considered as a mixture of multi-variant normal densities and the number of densities is assumed to know. In order to obtain the parameters of densities, deterministic annealing EM algorithm is introduced. In DAEM algorithm, the EM process is reformulated as the problem of minimizing the thermodynamic free energy by using a statistical mechanics analogy. Thus, The DAEM algorithm can overcome the local maximize problem of general EM algorithm. The proposed method is successfully applied to image segmentation experiments. |
| Author | Runsheng Wang Jiaqiang Zhong |
| Author_xml | – sequence: 1 surname: Jiaqiang Zhong fullname: Jiaqiang Zhong organization: ATR Nat. Labs, Nat. Univ. of Defense Technol., Changsha, China – sequence: 2 surname: Runsheng Wang fullname: Runsheng Wang organization: ATR Nat. Labs, Nat. Univ. of Defense Technol., Changsha, China |
| BookMark | eNotj11LwzAYhQMq6Ob-gN7kD7S-TZqPXY4xdTBRrIJ3I23e1kCbjiRT_PdW3NUDh8PDOTNy7kePhNwUkBcFLO9et1X1kjMAnhdMC1myMzIDpYGrJRMfl2QRo6uBSaGg1OUVqVbU4zc9-ng8YPhyES11g-mQRuwG9MkkN3pq-m4MLn0OtDZ_lSmymDAMzruYXEON92h65zu6ebomF63pIy5OnJP3-83b-jHbPT9s16td5golUqaN0Y2WWNdcoBHMNFq1daOYtVZzRKZQ6Jar1sqmVMBAaquwlYC2ZBP4nNz-ex0i7g9h2h1-9qff_Be3q1KE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RISSP.2003.1285642 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 604 vol.1 |
| ExternalDocumentID | 1285642 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-8aa8c86ebb35ea52ac87fbc72ddd83ee27e58f37fd6c4702068d7ef60ed42f603 |
| IEDL.DBID | RIE |
| ISBN | 078037925X 9780780379251 |
| IngestDate | Wed Aug 27 02:18:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-8aa8c86ebb35ea52ac87fbc72ddd83ee27e58f37fd6c4702068d7ef60ed42f603 |
| ParticipantIDs | ieee_primary_1285642 |
| PublicationCentury | 2000 |
| PublicationDate | 20030000 |
| PublicationDateYYYYMMDD | 2003-01-01 |
| PublicationDate_xml | – year: 2003 text: 20030000 |
| PublicationDecade | 2000 |
| PublicationTitle | IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003 |
| PublicationTitleAbbrev | RISSP |
| PublicationYear | 2003 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026570484 |
| Score | 1.3132389 |
| Snippet | A new unsupervised image segmentation algorithm based on deterministic annealing EM (DAEM) is proposed in this paper. The method is based on maximum likelihood... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 600 |
| SubjectTerms | Annealing Convergence Image processing Image segmentation Maximum likelihood estimation Parameter estimation Partitioning algorithms Robots Signal processing algorithms Thermodynamics |
| Title | A new unsupervised image segmentation algorithm based on deterministic annealing EM |
| URI | https://ieeexplore.ieee.org/document/1285642 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Qkyc1YPydHjy6Mbr-2tEYCJpgiEjCjXTtNyTKILBd_Otty4bRePDUtYelaZv3fW3fe0Xo1l3F8SSmAY9FFlAlneWtIzvY3MguAQvLXrc2fOaDCX2asmkD3e21MADgyWcQuk9_l29WunRHZR2LpczmywfoQEi-02rVa4c4CgeV1O_MZRSLhLDaYKeud2vRTJR0Xh7H45G3Aw2rv_54XsVHl_4RGtb92pFK3sOySEP9-cuy8b8dP0btbx0fHu0j1AlqQN5C43tsU2lc5tty7YBiCwYvlhZW8Bbmy0qKlGP1MV9tFsXbErtAZ7BtMhV1xns7Y2URWjkxO-4N22jS770-DILqaYVgYfOFIpBKSS05pGnMQDGitBRZqgUxxsgYgAhgMrPTZ7imwqaUXBoBGY_AUGKL-BQ181UOZwgnqY4gAlApM5Qqorq2LiXTCVGZRZBz1HIDMlvv3DNm1Vhc_N18iQ49Xc4fclyhZrEp4dqG_SK98fP9BWINqk0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwHG0QD3pSA8Zve_DoYHTt1h2NgaAyQgQSbqRrf0OiDALbxb_etmwYjQdPW3tYmrZ5fWvfe0XozhzF-aFHHd8LEocKbiJvjdhBcyM9BTQsW99a1Pe7Y_o8YZMKut95YQDAis-gYV7tWb5aytxslTU1ljLNl_fQPqOUsq1bq5w9xIg4KKf235y7XhASVkbslOVWaZtxw-br03A4sIGgjeK7Py5YsetL5whFZcu2spL3Rp7FDfn5K7Txv00_RvVvJx8e7NaoE1SBtIaGD1iTaZynm3xloGIDCs8XGljwBmaLwoyUYvExW67n2dsCm6VOYV2lCvGMTXfGQmO0MHZ23I7qaNxpjx67TnG5gjPXjCFzuBBcch_i2GMgGBGSB0ksA6KU4h4ACYDxRA-g8iUNNKn0uQog8V1QlOiHd4qq6TKFM4TDWLrgAoiYKUoFES1d5pzJkIhEY8g5qpkOma62-RnToi8u_q6-RQfdUdSb9p76L5fo0Irn7JbHFapm6xyuNQnI4hs79l99ra2a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Robotics%2C+Intelligent+Systems+and+Signal+Processing%2C+2003.+Proceedings.+2003&rft.atitle=A+new+unsupervised+image+segmentation+algorithm+based+on+deterministic+annealing+EM&rft.au=Jiaqiang+Zhong&rft.au=Runsheng+Wang&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780379251&rft.volume=1&rft.spage=600&rft.epage=604+vol.1&rft_id=info:doi/10.1109%2FRISSP.2003.1285642&rft.externalDocID=1285642 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780379251/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780379251/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780379251/sc.gif&client=summon&freeimage=true |