An Efficient g-Centroid Location Algorithm for Ptolemaic Graphs

In an earlier paper by C.Pandu et al (1998), we presented an O(m 2 ) algorithm for locating the g-centroid for ptolemaic graphs. Here we improve the time complexity and propose an efficient O(n 3 )-time algorithm for locating the g-centroid for ptolemaic graphs. This is by defining an auxiliary grap...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Computer Science and its Applications pp. 309 - 313
Main Author Veeraraghavan, P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2008
Subjects
Online AccessGet full text
ISBN0769534287
9780769534282
ISSN2159-7030
DOI10.1109/CSA.2008.49

Cover

Abstract In an earlier paper by C.Pandu et al (1998), we presented an O(m 2 ) algorithm for locating the g-centroid for ptolemaic graphs. Here we improve the time complexity and propose an efficient O(n 3 )-time algorithm for locating the g-centroid for ptolemaic graphs. This is by defining an auxiliary graph.
AbstractList In an earlier paper by C.Pandu et al (1998), we presented an O(m 2 ) algorithm for locating the g-centroid for ptolemaic graphs. Here we improve the time complexity and propose an efficient O(n 3 )-time algorithm for locating the g-centroid for ptolemaic graphs. This is by defining an auxiliary graph.
Author Veeraraghavan, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Veeraraghavan
  fullname: Veeraraghavan, P.
  organization: Dept. of Comput. Sci. & Comput. Eng., La Trobe Univ., Melbourne, VIC
BookMark eNotjs1Kw0AURgdswaZ25dLNvEDincxf7kpCqFUIKKjrMplM2pEkUybZ-PZG7OosvsPHSchqDKMj5J5BxhjgY_VRZjlAkQm8IQlohZKLvNArssmZxFQDhzVJ_hTkvMjxluym6RsAOCtQYb4hT-VI913nrXfjTE9ptSAG39I6WDP7MNKyP4Xo5_NAuxDp-xx6Nxhv6SGay3m6I-vO9JPbXbklX8_7z-olrd8Or1VZp55pOafaGWCiVS1HzK3WS51AZVpAA6AkqEaABFsY64rOGdkI3XQNw2XR1hjOt-Th_9c7546X6AcTf45CScFA8V-6-krN
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSA.2008.49
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 313
ExternalDocumentID 4654106
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-7ea014d6d3992c77159496ad09a006506b4050c8ace8fea5b47bfb195067caa33
IEDL.DBID RIE
ISBN 0769534287
9780769534282
ISSN 2159-7030
IngestDate Wed Aug 27 02:03:09 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008933829
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7ea014d6d3992c77159496ad09a006506b4050c8ace8fea5b47bfb195067caa33
PageCount 5
ParticipantIDs ieee_primary_4654106
PublicationCentury 2000
PublicationDate 2008-Oct.
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-Oct.
PublicationDecade 2000
PublicationTitle International Symposium on Computer Science and its Applications
PublicationTitleAbbrev CSA
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189692
ssj0001968998
Score 1.4062756
Snippet In an earlier paper by C.Pandu et al (1998), we presented an O(m 2 ) algorithm for locating the g-centroid for ptolemaic graphs. Here we improve the time...
SourceID ieee
SourceType Publisher
StartPage 309
SubjectTerms Classification algorithms
Complexity theory
Computer science
Distance measurement
Distributed computing
g-centroid
g-convexity
Mobile ad hoc networks
Polynomials
ptolemaic graphs
Title An Efficient g-Centroid Location Algorithm for Ptolemaic Graphs
URI https://ieeexplore.ieee.org/document/4654106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMH6nB48W9tmuJ0MISIwYEiXhRvqJi7AZHBf_ettuA2M8eFuXZtm6173f7-293wPgVnNO_JgEiBuuYQgKxYhLIZDGLNEMi0REtsB58ozHs-hxHs8b4G5XC6OUcslnqmsP3b98mYutDZX1rPaXb_W1D0iCy1qtfTyF4h11sGNjqxS7nsjGqVFkDbtk7TQOLU2oxHfqcVDV7vke7Q1e-mWSpRXY_NFzxbmcUQtM6pstM03eu9uCd8XXLx3H_z7NEejsi_vgdOe2jkFDZSegVXd3gNVmb4P7fgaHTmDCXAYukYsD56mET3kZ5oP91TLfpMXbGhrkC6dFvlJrlgr4YEWwPztgNhq-DsaoareAUoMhCkQUM3xJYmm1agUxr5BGFDPpUeaAHOYG3HkiYUIlWrGYR4RrbtvIYiIYC8NT0MzyTJ0BGBgnxxMvZiSUEeXafCQoV4SbSTryfXYO2nY9Fh-losaiWoqLv09fgsOgVqH1r0Cz2GzVtYECBb9xNvANt-GrTQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvTkDzD-tgePFrbRtevJEAKiAiEREm6k7TpchM3guPjX23YbGOPB27o0y9a97n3f23vfA-AuEoK6PvWQ0FxDExRGkAilRBHhQcSJDCQ2Bc7DEelP8fPMn1XA_bYWRillk89Uwxzaf_lhKjcmVNY02l-u0dfe8zHGfl6ttYuoMLIlD2asrZUR2xVZuzWGjGnnvJ35LUMUCvmdcuwV1Xuuw5qd13aeZmkkNn90XbFOp3cIhuXt5rkm741NJhry65eS43-f5wjUd-V9cLx1XMegopITcFj2d4DFdq-Bh3YCu1ZiQl8GLpCNBKdxCAdpHuiD7eUiXcfZ2wpq7AvHWbpUKx5L-GhksD_rYNrrTjp9VDRcQLFGERmiimvGFJLQqNVKql8iw4zw0GHcQjkiNLxzZMClCiLFfYGpiIRpJEuo5LzVOgXVJE3UGYCednMicHxOWyFmItKfCSYUFXpShF2Xn4OaWY_5R66pMS-W4uLv07dgvz8ZDuaDp9HLJTjwSk1a9wpUs_VGXWtgkIkbaw_f6m-umg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computer+Science+and+its+Applications&rft.atitle=An+Efficient+g-Centroid+Location+Algorithm+for+Ptolemaic+Graphs&rft.au=Veeraraghavan%2C+P.&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9780769534282&rft.issn=2159-7030&rft.spage=309&rft.epage=313&rft_id=info:doi/10.1109%2FCSA.2008.49&rft.externalDocID=4654106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-7030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-7030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-7030&client=summon