Autonomous emergency braking based on radial basis function neural network variable structure control for collision avoidance
Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio co...
Saved in:
| Published in | ITNEC : 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference : 15-17 December 2017 pp. 378 - 383 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2017
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ITNEC.2017.8284756 |
Cover
| Abstract | Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio control layer. The threat assessment layer continuously calculates threat metrics associated with collision avoidance by braking control. As for the tire slip ratio control layer, a radial basis function neural network (RBFNN) variable structure control (VSC) algorithm is designed to track optimal slip ratio, which enabled the controlled vehicle to generate the highest possible deceleration. Finally, simulation test is conducted via MATLAB/Simulink platform on dry and wet asphalt pavement at high speed. The results show that the proposed AEB control scheme effectively performs collision avoidance maneuvers. |
|---|---|
| AbstractList | Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio control layer. The threat assessment layer continuously calculates threat metrics associated with collision avoidance by braking control. As for the tire slip ratio control layer, a radial basis function neural network (RBFNN) variable structure control (VSC) algorithm is designed to track optimal slip ratio, which enabled the controlled vehicle to generate the highest possible deceleration. Finally, simulation test is conducted via MATLAB/Simulink platform on dry and wet asphalt pavement at high speed. The results show that the proposed AEB control scheme effectively performs collision avoidance maneuvers. |
| Author | Yang, Kaiming He, Xiangkun Wu, Jian Ji, Xuewu |
| Author_xml | – sequence: 1 givenname: Xiangkun surname: He fullname: He, Xiangkun organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University – sequence: 2 givenname: Xuewu surname: Ji fullname: Ji, Xuewu organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University – sequence: 3 givenname: Kaiming surname: Yang fullname: Yang, Kaiming organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University – sequence: 4 givenname: Jian surname: Wu fullname: Wu, Jian organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University |
| BookMark | eNotkE9PAjEUxGuiiYJ8Ab30C4Cvu93d9kgI_kmIXvBMXruvpLK0pt3FcPC7C5HTzPySmcOM2HWIgRh7EDATAvTT2_p9uZgVIJqZKpRsqvqKjUQFGmoppLhlk5y_AEDoWpVa3rHf-dDHEPdxyJz2lLYU7JGbhDsfttxgppbHwBO2Hrtz9pm7Idjen2igIZ1ooP4nph0_YPJoOuK5T4Pth0TcxtCn2HEX08l3nc_nHh6ibzFYumc3DrtMk4uO2efzcr14na4-Xt4W89XUi6bqpw3VoMsClAEnwRmNjQPtZEuVamtltXWytNoVGrBsC6ulQqNJyVqBqTSWY_b4v-uJaPOd_B7TcXN5qPwDpl5iBw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ITNEC.2017.8284756 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1509064141 1509064125 9781509064120 9781509064144 |
| EndPage | 383 |
| ExternalDocumentID | 8284756 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-7e6093208b0f40fb9a7f09f4de58d68c9cf43c9f290a3d2c948ab9e84680b59a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:51:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-7e6093208b0f40fb9a7f09f4de58d68c9cf43c9f290a3d2c948ab9e84680b59a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8284756 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec. |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | ITNEC : 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference : 15-17 December 2017 |
| PublicationTitleAbbrev | ITNEC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001968394 |
| Score | 1.6616784 |
| Snippet | Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 378 |
| SubjectTerms | AEB collision avoidance Frequency modulation Geophysical measurement techniques Ground penetrating radar neural network Noise measurement variable structure control |
| Title | Autonomous emergency braking based on radial basis function neural network variable structure control for collision avoidance |
| URI | https://ieeexplore.ieee.org/document/8284756 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLXaTrDwaBFveWAkqds6jj2iiqogUTG0UrcqfkkVKEEl6YDEv3NvkraAGNgSS3n5Wrnn2uccE3IDEMh7reLAWKUCDikjSFzPBH2hpet5i_4ryLaYiPGMP86jeYPcbrUwzrmSfOZCPCzX8m1mCpwq60r8l0aiSZqxFJVWazefogTker7RxTDVfZhO7odI3orD-sIfO6iUCWR0QJ42j654Iy9hkevQfPxyZfzvux2Szk6qR5-3SeiINFx6TPa_uQy2yeddkaN0AWp86jZqSwpVMs6SU0xjlmYpXaFLwSueL98ppjsMGUW_S2hNK7Y4XUNpjWIrWvnOFitHa7I7BfRLcVSVYnWarLOlxRHVIbPR_XQ4DupdF4IlQIk8iJ1gAOqY1MxzBnFMYs-U59ZF0gpplPF8YJTvK5YMbN8oLhOtHOAYyXSkksEJaaVZ6k4J1TbSTChvY2e4RTDRgxvEfsCtANhgz0gbO3LxVhlrLOo-PP-7-YLsYTArLsklacF3uitABLm-LofCF0lgupQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLCwOdPmZpCAQUiAtI2JHOKyGa1mDLwsR_9962gBoX7tpJ-po76T135pwzhNwBBLJWisBRWgiHQ8pwItNSTtuXoWlZjf4ryLYY-_0pf5x5swq532hhjDE5-cw08DBfy9eJynCqrBniv9Tzd8iuxzn3CrXWdkZF-JDt-VoZw0RzMBl3O0jfChrlpT_2UMlTSO-QjNYPL5gjL40slQ318cuX8b9vd0TqW7Eefd6koWNSMfEJOfjmM1gjnw9ZiuIFqPKpWestKdTJOE9OMZFpmsR0iT4Fr3i-eKeY8DBoFB0voTUu-OJ0BcU1yq1o4TybLQ0t6e4U8C_FcZXL1Wm0ShYax1SdTHvdSafvlPsuOAsAE6kTGJ8BrGOhZJYziGQUWCYs18YLtR8qoSx3lbBtwSJXt5XgYSSFASQTMumJyD0l1TiJzRmhUnuS-cLqwCiuEU604AaBdbn2ATjoc1LDjpy_FdYa87IPL_5uviV7_cloOB8Oxk-XZB8DWzBLrkgVvtlcAz5I5U0-LL4ANVq94Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ITNEC+%3A+2017+IEEE+2nd+Information+Technology%2C+Networking%2C+Electronic+and+Automation+Control+Conference+%3A+15-17+December+2017&rft.atitle=Autonomous+emergency+braking+based+on+radial+basis+function+neural+network+variable+structure+control+for+collision+avoidance&rft.au=He%2C+Xiangkun&rft.au=Ji%2C+Xuewu&rft.au=Yang%2C+Kaiming&rft.au=Wu%2C+Jian&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=378&rft.epage=383&rft_id=info:doi/10.1109%2FITNEC.2017.8284756&rft.externalDocID=8284756 |