Autonomous emergency braking based on radial basis function neural network variable structure control for collision avoidance

Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio co...

Full description

Saved in:
Bibliographic Details
Published inITNEC : 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference : 15-17 December 2017 pp. 378 - 383
Main Authors He, Xiangkun, Ji, Xuewu, Yang, Kaiming, Wu, Jian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2017
Subjects
Online AccessGet full text
DOI10.1109/ITNEC.2017.8284756

Cover

Abstract Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio control layer. The threat assessment layer continuously calculates threat metrics associated with collision avoidance by braking control. As for the tire slip ratio control layer, a radial basis function neural network (RBFNN) variable structure control (VSC) algorithm is designed to track optimal slip ratio, which enabled the controlled vehicle to generate the highest possible deceleration. Finally, simulation test is conducted via MATLAB/Simulink platform on dry and wet asphalt pavement at high speed. The results show that the proposed AEB control scheme effectively performs collision avoidance maneuvers.
AbstractList Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency rear-end collision avoidance control strategy using hierarchical control framework which consists of threat assessment layer, tire slip ratio control layer. The threat assessment layer continuously calculates threat metrics associated with collision avoidance by braking control. As for the tire slip ratio control layer, a radial basis function neural network (RBFNN) variable structure control (VSC) algorithm is designed to track optimal slip ratio, which enabled the controlled vehicle to generate the highest possible deceleration. Finally, simulation test is conducted via MATLAB/Simulink platform on dry and wet asphalt pavement at high speed. The results show that the proposed AEB control scheme effectively performs collision avoidance maneuvers.
Author Yang, Kaiming
He, Xiangkun
Wu, Jian
Ji, Xuewu
Author_xml – sequence: 1
  givenname: Xiangkun
  surname: He
  fullname: He, Xiangkun
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University
– sequence: 2
  givenname: Xuewu
  surname: Ji
  fullname: Ji, Xuewu
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University
– sequence: 3
  givenname: Kaiming
  surname: Yang
  fullname: Yang, Kaiming
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University
– sequence: 4
  givenname: Jian
  surname: Wu
  fullname: Wu, Jian
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University
BookMark eNotkE9PAjEUxGuiiYJ8Ab30C4Cvu93d9kgI_kmIXvBMXruvpLK0pt3FcPC7C5HTzPySmcOM2HWIgRh7EDATAvTT2_p9uZgVIJqZKpRsqvqKjUQFGmoppLhlk5y_AEDoWpVa3rHf-dDHEPdxyJz2lLYU7JGbhDsfttxgppbHwBO2Hrtz9pm7Idjen2igIZ1ooP4nph0_YPJoOuK5T4Pth0TcxtCn2HEX08l3nc_nHh6ibzFYumc3DrtMk4uO2efzcr14na4-Xt4W89XUi6bqpw3VoMsClAEnwRmNjQPtZEuVamtltXWytNoVGrBsC6ulQqNJyVqBqTSWY_b4v-uJaPOd_B7TcXN5qPwDpl5iBw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITNEC.2017.8284756
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1509064141
1509064125
9781509064120
9781509064144
EndPage 383
ExternalDocumentID 8284756
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-7e6093208b0f40fb9a7f09f4de58d68c9cf43c9f290a3d2c948ab9e84680b59a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7e6093208b0f40fb9a7f09f4de58d68c9cf43c9f290a3d2c948ab9e84680b59a3
PageCount 6
ParticipantIDs ieee_primary_8284756
PublicationCentury 2000
PublicationDate 2017-Dec.
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle ITNEC : 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference : 15-17 December 2017
PublicationTitleAbbrev ITNEC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968394
Score 1.6616784
Snippet Autonomous emergency braking (AEB) control is one of important vehicle intelligent safety technologies to avoid collision. This paper presents an emergency...
SourceID ieee
SourceType Publisher
StartPage 378
SubjectTerms AEB
collision avoidance
Frequency modulation
Geophysical measurement techniques
Ground penetrating radar
neural network
Noise measurement
variable structure control
Title Autonomous emergency braking based on radial basis function neural network variable structure control for collision avoidance
URI https://ieeexplore.ieee.org/document/8284756
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLXaTrDwaBFveWAkqds6jj2iiqogUTG0UrcqfkkVKEEl6YDEv3NvkraAGNgSS3n5Wrnn2uccE3IDEMh7reLAWKUCDikjSFzPBH2hpet5i_4ryLaYiPGMP86jeYPcbrUwzrmSfOZCPCzX8m1mCpwq60r8l0aiSZqxFJVWazefogTker7RxTDVfZhO7odI3orD-sIfO6iUCWR0QJ42j654Iy9hkevQfPxyZfzvux2Szk6qR5-3SeiINFx6TPa_uQy2yeddkaN0AWp86jZqSwpVMs6SU0xjlmYpXaFLwSueL98ppjsMGUW_S2hNK7Y4XUNpjWIrWvnOFitHa7I7BfRLcVSVYnWarLOlxRHVIbPR_XQ4DupdF4IlQIk8iJ1gAOqY1MxzBnFMYs-U59ZF0gpplPF8YJTvK5YMbN8oLhOtHOAYyXSkksEJaaVZ6k4J1TbSTChvY2e4RTDRgxvEfsCtANhgz0gbO3LxVhlrLOo-PP-7-YLsYTArLsklacF3uitABLm-LofCF0lgupQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLCwOdPmZpCAQUiAtI2JHOKyGa1mDLwsR_9962gBoX7tpJ-po76T135pwzhNwBBLJWisBRWgiHQ8pwItNSTtuXoWlZjf4ryLYY-_0pf5x5swq532hhjDE5-cw08DBfy9eJynCqrBniv9Tzd8iuxzn3CrXWdkZF-JDt-VoZw0RzMBl3O0jfChrlpT_2UMlTSO-QjNYPL5gjL40slQ318cuX8b9vd0TqW7Eefd6koWNSMfEJOfjmM1gjnw9ZiuIFqPKpWestKdTJOE9OMZFpmsR0iT4Fr3i-eKeY8DBoFB0voTUu-OJ0BcU1yq1o4TybLQ0t6e4U8C_FcZXL1Wm0ShYax1SdTHvdSafvlPsuOAsAE6kTGJ8BrGOhZJYziGQUWCYs18YLtR8qoSx3lbBtwSJXt5XgYSSFASQTMumJyD0l1TiJzRmhUnuS-cLqwCiuEU604AaBdbn2ATjoc1LDjpy_FdYa87IPL_5uviV7_cloOB8Oxk-XZB8DWzBLrkgVvtlcAz5I5U0-LL4ANVq94Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ITNEC+%3A+2017+IEEE+2nd+Information+Technology%2C+Networking%2C+Electronic+and+Automation+Control+Conference+%3A+15-17+December+2017&rft.atitle=Autonomous+emergency+braking+based+on+radial+basis+function+neural+network+variable+structure+control+for+collision+avoidance&rft.au=He%2C+Xiangkun&rft.au=Ji%2C+Xuewu&rft.au=Yang%2C+Kaiming&rft.au=Wu%2C+Jian&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=378&rft.epage=383&rft_id=info:doi/10.1109%2FITNEC.2017.8284756&rft.externalDocID=8284756