Review based on data clustering algorithms

A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to clu...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Conference on Information and Communication Technologies pp. 298 - 303
Main Authors Nagpal, Arpita, Jatain, Aman, Gaur, Deepti
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2013
Subjects
Online AccessGet full text
ISBN9781467357593
1467357596
DOI10.1109/CICT.2013.6558109

Cover

Abstract A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to cluster the data set into different partitions. Well known clustering algorithms have been widely used in various disciplines. Type of clustering algorithm used depends upon the application and data set used in that field. Numerical data set is comparatively easy to implement as data are invariably real number and can be used for statistical applications. Others type of data set such as categorical, time series, boolean, and spatial, temporal have limited applications. By viewing the statistical analysis, it is observed that there is no optimal solution for handling problems with large data sets of mixed and categorical attributes. Some of the algorithms can be applied but their performance degrades as the size of data keeps on increasing.
AbstractList A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to cluster the data set into different partitions. Well known clustering algorithms have been widely used in various disciplines. Type of clustering algorithm used depends upon the application and data set used in that field. Numerical data set is comparatively easy to implement as data are invariably real number and can be used for statistical applications. Others type of data set such as categorical, time series, boolean, and spatial, temporal have limited applications. By viewing the statistical analysis, it is observed that there is no optimal solution for handling problems with large data sets of mixed and categorical attributes. Some of the algorithms can be applied but their performance degrades as the size of data keeps on increasing.
Author Jatain, Aman
Nagpal, Arpita
Gaur, Deepti
Author_xml – sequence: 1
  givenname: Arpita
  surname: Nagpal
  fullname: Nagpal, Arpita
  email: er.arpitanagpal@gmail.com
– sequence: 2
  givenname: Aman
  surname: Jatain
  fullname: Jatain, Aman
  email: amanjatain@itmindia.edu
– sequence: 3
  givenname: Deepti
  surname: Gaur
  fullname: Gaur, Deepti
  email: deeptigaur@itmindia.edu
BookMark eNpVT01Lw0AUXFFBrfkB4iVnIenbfdmvowQ_CoWC1HPZ7L7UlTSRbFT89wbsxdMww8wwc8XO-qEnxm44lJyDXdarelsK4FgqKc2snLDMasMrpVFqadTpP27xgmUpvQPAHFfC4CW7e6GvSN954xKFfOjz4CaX--4zTTTGfp-7bj-McXo7pGt23rouUXbEBXt9fNjWz8V687Sq79dF5FpOha6CpgYlAgmQjQ9WC0EGA1nfNtZY46Xk0s2jCCr0KmBLRriAsxm4wgW7_euNRLT7GOPBjT-740P8BfyeRLg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICT.2013.6558109
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467357586
146735757X
1467357588
9781467357579
EndPage 303
ExternalDocumentID 6558109
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-74d7eb3530e205bcd9722e83de9cfb9898c5515a467e043c6d3fe82ad35bc0163
IEDL.DBID RIE
ISBN 9781467357593
1467357596
IngestDate Wed Aug 27 02:49:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-74d7eb3530e205bcd9722e83de9cfb9898c5515a467e043c6d3fe82ad35bc0163
PageCount 6
ParticipantIDs ieee_primary_6558109
PublicationCentury 2000
PublicationDate 2013-April
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-April
PublicationDecade 2010
PublicationTitle 2013 IEEE Conference on Information and Communication Technologies
PublicationTitleAbbrev CICT
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106283
Score 1.838042
Snippet A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete...
SourceID ieee
SourceType Publisher
StartPage 298
SubjectTerms Algorithm design and analysis
Clustering algorithms
Clustering methods
Communications technology
Conferences
Couplings
Data Clustering
hierarchical clustering
Partitioning algorithms
Special
Statistical analysis
temporal
Title Review based on data clustering algorithms
URI https://ieeexplore.ieee.org/document/6558109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDp7Edm0-muZcHFNQPGyw22iSVx3OVmZ78a83SbsNxYOX0pYQkqbwXvJ-HwhdE64YKCaD3NgLA0mD3P4ngeRRQQU3hmqv9vmUTGbsYc7nPXS75cIAgAefQehufS3fVLpxR2WjhPM0dmy9PZEmLVdrd54SOzYg9dytRFDnO5lsJJ26Z9pVNW0Xo-w-mzpgFw27Tn-4q_jgMj5Aj5thtZiSt7CpVai_fik2_nfch2i4o_Hh522AOkI9KAfopq0GYBe-DK5K7DCiWK8ap5hgm-F89VKtl_Xr--cQzcZ302wSdIYJwdJmAXUgmBF2c8xpBCTiShspCIGUGpC6UM4pUtsEief2g0DE7CoYWkBKckNtY5v70WPUL6sSThBmeZwWsXD2mTFTRElZ8Bg4SYzdI8ZanaKBm-fio9XEWHRTPPv79TnaJ95GwiFeLlC_XjdwaYN5ra78Kn4DZd6ZDg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG8IHvSkBoxve_Bk3Fhfe5wXCSgQD5BwI2v7TYm4Gdwu_vW224BoPHhZtqVp2nXJ97Xf74HQLRWSg-SRk2hz4RAxJzH_iRMJL2WB0JqpSu1z4g9m_HEu5i10v-XCAEAFPgPX3la1fJ2r0h6V9XwhQmLZenuCcy5qttbuRIVYPiCr2Ft-wKzzpL8RdWqeWVPXNJ304mE8tdAu5jbd_vBXqcJL_xCNNwOrUSVvbllIV3390mz878iPUHdH5MPP2xB1jFqQddBdXQ_ANoBpnGfYokSxWpVWM8E0w8nqJV8vi9f3zy6a9R-m8cBpLBOcpckDCifgOjDbY8E8oJ6QSkcBpRAyDZFKpfWKVCZFEon5IOBxsw6apRDSRDPT2GR_7AS1szyDU4R5QsKUBNZAk3BJZRSlgoCgvja7RKLkGerYeS4-alWMRTPF879f36D9wXQ8WoyGk6cLdEArUwmLf7lE7WJdwpUJ7YW8rlb0G6QhnFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Information+and+Communication+Technologies&rft.atitle=Review+based+on+data+clustering+algorithms&rft.au=Nagpal%2C+Arpita&rft.au=Jatain%2C+Aman&rft.au=Gaur%2C+Deepti&rft.date=2013-04-01&rft.pub=IEEE&rft.isbn=9781467357593&rft.spage=298&rft.epage=303&rft_id=info:doi/10.1109%2FCICT.2013.6558109&rft.externalDocID=6558109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/sc.gif&client=summon&freeimage=true