Review based on data clustering algorithms
A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to clu...
Saved in:
| Published in | 2013 IEEE Conference on Information and Communication Technologies pp. 298 - 303 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781467357593 1467357596 |
| DOI | 10.1109/CICT.2013.6558109 |
Cover
| Abstract | A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to cluster the data set into different partitions. Well known clustering algorithms have been widely used in various disciplines. Type of clustering algorithm used depends upon the application and data set used in that field. Numerical data set is comparatively easy to implement as data are invariably real number and can be used for statistical applications. Others type of data set such as categorical, time series, boolean, and spatial, temporal have limited applications. By viewing the statistical analysis, it is observed that there is no optimal solution for handling problems with large data sets of mixed and categorical attributes. Some of the algorithms can be applied but their performance degrades as the size of data keeps on increasing. |
|---|---|
| AbstractList | A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete comparative statistical analysis of various clustering algorithms. Clustering algorithms usually employ distance metric or similarity metric to cluster the data set into different partitions. Well known clustering algorithms have been widely used in various disciplines. Type of clustering algorithm used depends upon the application and data set used in that field. Numerical data set is comparatively easy to implement as data are invariably real number and can be used for statistical applications. Others type of data set such as categorical, time series, boolean, and spatial, temporal have limited applications. By viewing the statistical analysis, it is observed that there is no optimal solution for handling problems with large data sets of mixed and categorical attributes. Some of the algorithms can be applied but their performance degrades as the size of data keeps on increasing. |
| Author | Jatain, Aman Nagpal, Arpita Gaur, Deepti |
| Author_xml | – sequence: 1 givenname: Arpita surname: Nagpal fullname: Nagpal, Arpita email: er.arpitanagpal@gmail.com – sequence: 2 givenname: Aman surname: Jatain fullname: Jatain, Aman email: amanjatain@itmindia.edu – sequence: 3 givenname: Deepti surname: Gaur fullname: Gaur, Deepti email: deeptigaur@itmindia.edu |
| BookMark | eNpVT01Lw0AUXFFBrfkB4iVnIenbfdmvowQ_CoWC1HPZ7L7UlTSRbFT89wbsxdMww8wwc8XO-qEnxm44lJyDXdarelsK4FgqKc2snLDMasMrpVFqadTpP27xgmUpvQPAHFfC4CW7e6GvSN954xKFfOjz4CaX--4zTTTGfp-7bj-McXo7pGt23rouUXbEBXt9fNjWz8V687Sq79dF5FpOha6CpgYlAgmQjQ9WC0EGA1nfNtZY46Xk0s2jCCr0KmBLRriAsxm4wgW7_euNRLT7GOPBjT-740P8BfyeRLg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CICT.2013.6558109 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467357586 146735757X 1467357588 9781467357579 |
| EndPage | 303 |
| ExternalDocumentID | 6558109 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-74d7eb3530e205bcd9722e83de9cfb9898c5515a467e043c6d3fe82ad35bc0163 |
| IEDL.DBID | RIE |
| ISBN | 9781467357593 1467357596 |
| IngestDate | Wed Aug 27 02:49:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-74d7eb3530e205bcd9722e83de9cfb9898c5515a467e043c6d3fe82ad35bc0163 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6558109 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-April |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-April |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE Conference on Information and Communication Technologies |
| PublicationTitleAbbrev | CICT |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001106283 |
| Score | 1.838042 |
| Snippet | A review based on different types of clustering algorithms with their corresponding data sets has been proposed. In this paper, we have given a complete... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 298 |
| SubjectTerms | Algorithm design and analysis Clustering algorithms Clustering methods Communications technology Conferences Couplings Data Clustering hierarchical clustering Partitioning algorithms Special Statistical analysis temporal |
| Title | Review based on data clustering algorithms |
| URI | https://ieeexplore.ieee.org/document/6558109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDp7Edm0-muZcHFNQPGyw22iSVx3OVmZ78a83SbsNxYOX0pYQkqbwXvJ-HwhdE64YKCaD3NgLA0mD3P4ngeRRQQU3hmqv9vmUTGbsYc7nPXS75cIAgAefQehufS3fVLpxR2WjhPM0dmy9PZEmLVdrd54SOzYg9dytRFDnO5lsJJ26Z9pVNW0Xo-w-mzpgFw27Tn-4q_jgMj5Aj5thtZiSt7CpVai_fik2_nfch2i4o_Hh522AOkI9KAfopq0GYBe-DK5K7DCiWK8ap5hgm-F89VKtl_Xr--cQzcZ302wSdIYJwdJmAXUgmBF2c8xpBCTiShspCIGUGpC6UM4pUtsEief2g0DE7CoYWkBKckNtY5v70WPUL6sSThBmeZwWsXD2mTFTRElZ8Bg4SYzdI8ZanaKBm-fio9XEWHRTPPv79TnaJ95GwiFeLlC_XjdwaYN5ra78Kn4DZd6ZDg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG8IHvSkBoxve_Bk3Fhfe5wXCSgQD5BwI2v7TYm4Gdwu_vW224BoPHhZtqVp2nXJ97Xf74HQLRWSg-SRk2hz4RAxJzH_iRMJL2WB0JqpSu1z4g9m_HEu5i10v-XCAEAFPgPX3la1fJ2r0h6V9XwhQmLZenuCcy5qttbuRIVYPiCr2Ft-wKzzpL8RdWqeWVPXNJ304mE8tdAu5jbd_vBXqcJL_xCNNwOrUSVvbllIV3390mz878iPUHdH5MPP2xB1jFqQddBdXQ_ANoBpnGfYokSxWpVWM8E0w8nqJV8vi9f3zy6a9R-m8cBpLBOcpckDCifgOjDbY8E8oJ6QSkcBpRAyDZFKpfWKVCZFEon5IOBxsw6apRDSRDPT2GR_7AS1szyDU4R5QsKUBNZAk3BJZRSlgoCgvja7RKLkGerYeS4-alWMRTPF879f36D9wXQ8WoyGk6cLdEArUwmLf7lE7WJdwpUJ7YW8rlb0G6QhnFs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Information+and+Communication+Technologies&rft.atitle=Review+based+on+data+clustering+algorithms&rft.au=Nagpal%2C+Arpita&rft.au=Jatain%2C+Aman&rft.au=Gaur%2C+Deepti&rft.date=2013-04-01&rft.pub=IEEE&rft.isbn=9781467357593&rft.spage=298&rft.epage=303&rft_id=info:doi/10.1109%2FCICT.2013.6558109&rft.externalDocID=6558109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/sc.gif&client=summon&freeimage=true |