Performance Evaluation of Multithreaded Sparse Matrix-Vector Multiplication Using OpenMP

Sparse matrix-vector multiplication is an important computational kernel in scientific applications. However, it performs poorly on modern processors because of a low compute-to-memory ratio and its irregular memory access patterns. This paper discusses the implementations of sparse matrix-vector al...

Full description

Saved in:
Bibliographic Details
Published in2009 11th IEEE International Conference on High Performance Computing and Communications pp. 659 - 665
Main Authors Shengfei Liu, Yunquan Zhang, Xiangzheng Sun, RongRong Qiu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text
ISBN1424446007
9781424446001
DOI10.1109/HPCC.2009.75

Cover

Abstract Sparse matrix-vector multiplication is an important computational kernel in scientific applications. However, it performs poorly on modern processors because of a low compute-to-memory ratio and its irregular memory access patterns. This paper discusses the implementations of sparse matrix-vector algorithm using OpenMP to execute iterative methods on the Dawning S4800A1. Two storage formats (CSR and BCSR) for sparse matrices and three scheduling schemes (static, dynamic and guided) provided by the standard OpenMP are evaluated. We also compared these three schemes with non-zero scheduling, where each thread is assigned approximately the same number of non-zero elements. Experimental data shows that, the non-zero scheduling can provide the best performance in most cases. The current implementation provides satisfactory scalability for most of matrices. However, we only get a limited speedup for some large matrices that contain millions of non-zero elements.
AbstractList Sparse matrix-vector multiplication is an important computational kernel in scientific applications. However, it performs poorly on modern processors because of a low compute-to-memory ratio and its irregular memory access patterns. This paper discusses the implementations of sparse matrix-vector algorithm using OpenMP to execute iterative methods on the Dawning S4800A1. Two storage formats (CSR and BCSR) for sparse matrices and three scheduling schemes (static, dynamic and guided) provided by the standard OpenMP are evaluated. We also compared these three schemes with non-zero scheduling, where each thread is assigned approximately the same number of non-zero elements. Experimental data shows that, the non-zero scheduling can provide the best performance in most cases. The current implementation provides satisfactory scalability for most of matrices. However, we only get a limited speedup for some large matrices that contain millions of non-zero elements.
Author Shengfei Liu
Xiangzheng Sun
Yunquan Zhang
RongRong Qiu
Author_xml – sequence: 1
  surname: Shengfei Liu
  fullname: Shengfei Liu
  organization: Inst. of Software, Chinese Acad. of Sci., Beijing, China
– sequence: 2
  surname: Yunquan Zhang
  fullname: Yunquan Zhang
  organization: Inst. of Software, Chinese Acad. of Sci., Beijing, China
– sequence: 3
  surname: Xiangzheng Sun
  fullname: Xiangzheng Sun
  organization: Inst. of Software, Chinese Acad. of Sci., Beijing, China
– sequence: 4
  surname: RongRong Qiu
  fullname: RongRong Qiu
BookMark eNotj81Kw0AURkdU0Nbu3LnJCyTeO7_JUkK1QksLWnFXJpM7OpAmYZKKvr1CXH2bcw58M3bRdi0xdouQIUJxv9qVZcYBisyoMzYDowsljMjFOZuh5FJKDWCu2GIYQgUCQAuJ_Jq97yj6Lh5t6yhZftnmZMfQtUnnk82pGcP4GcnWVCcvvY0DJRs7xvCdvpEbuzghfRPcJO2H0H4k257aze6GXXrbDLT43znbPy5fy1W63j49lw_rNKBRY2rQaF6h8bwAUxfcuVwbheCtq9H-XcOctHLWFFUljde59IgV9zwnrjg5MWd3UzcQ0aGP4Wjjz0GhNqBB_AK5DFNZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPCC.2009.75
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0769537383
9780769537382
EndPage 665
ExternalDocumentID 5167060
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-71762b17f2907d92cc867510facd1a11018e65ca79bb47f684f11b2f28e252ec3
IEDL.DBID RIE
ISBN 1424446007
9781424446001
IngestDate Wed Aug 27 02:08:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-71762b17f2907d92cc867510facd1a11018e65ca79bb47f684f11b2f28e252ec3
PageCount 7
ParticipantIDs ieee_primary_5167060
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 11th IEEE International Conference on High Performance Computing and Communications
PublicationTitleAbbrev HPCC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030063412
ssj0000453063
Score 1.4518547
Snippet Sparse matrix-vector multiplication is an important computational kernel in scientific applications. However, it performs poorly on modern processors because...
SourceID ieee
SourceType Publisher
StartPage 659
SubjectTerms High performance computing
Job shop scheduling
Kernel
Libraries
Load Balance
Multicore processing
Multithreaded
OpenMP
Packaging
Processor scheduling
Scalability
Software packages
Sparse matrices
Sparse Matrix-Vector Multiplication
Title Performance Evaluation of Multithreaded Sparse Matrix-Vector Multiplication Using OpenMP
URI https://ieeexplore.ieee.org/document/5167060
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA7bTp5UNvFNDh7N1qRpmpzHxhAqBZ3sNvIEEbYhHcj-epP0MREP3trSQ5tf6fd7fN8XAB6CZXrqcoE4owZ5hJaIG8cRS6hUxGmX6NDvKJ7ZYkmfVtmqBx47LYy1NpLP7Dgcxlm-2ep9aJVNMsyC2Usf9HPOaq1W--2kAWtpA9XxL0wznw2nrZaLBh_21uKpOccdEV5MFuV0WrtXBsbhj41WIs7MT0HRPmFNL_kY7ys11odf5o3_fYUzMDoq-mDZYdU56NnNEKzKo2oAzjrbb7h1sNbl-jhLYw182fny18Ii2Pl_obfY6K9v6abfMHIPYOCnFOUILOez1-kCNTstoHefPlTI13SMKJw74mtlI4jW3BcSOHFSGyxxcPWyLNMyF0rR3DFOHcY-lIRbkhGr0wsw2Gw39hJAziTDSigpc0J9-iczZrimxlGXCCnwFRiGVVnvajONdbMg139fvgEn9fgmtD1uwaD63Ns7nwVU6j6G_xuU0azM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zHvSksolvc_BotiZN0_Q8JlXXUXCT3UaeIMI2pAPxrzfpayIevLUlhzYJ_X6P7_sCwJ23TA9tnCDOqEYOoQXi2nLEAiokscoGytc7silL5_RpES064L7VwhhjSvKZGfjLspev12rrS2XDCDNv9rIH9iNKaVSptZrdE3q0pTVYl_9hGrl4OGzUXNQ7sTcmT_U9bqnwyTDNR6PKv9JzDn8ctVIizcMRyJp3rAgm74NtIQfq65d9438_4hj0d5o-mLdodQI6ZtUDi3ynG4Dj1vgbri2slLlupYU2Gr5sXAJsYOYN_T_Ra1nqr4a0_W9Ysg-gZ6hkeR_MH8azUYrqsxbQmwsgCuSyOkYkji1x2bJOiFLcpRI4sEJpLLD39TIsUiJOpKSxZZxajN1iEm5IRIwKT0F3tV6ZMwA5EwzLRAoRE-oCQBExzRXVltogEQk-Bz0_K8tNZaexrCfk4u_Ht-AgnWWT5eRx-nwJDqtmji-CXIFu8bE11y4mKORNuRW-AdWisBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+11th+IEEE+International+Conference+on+High+Performance+Computing+and+Communications&rft.atitle=Performance+Evaluation+of+Multithreaded+Sparse+Matrix-Vector+Multiplication+Using+OpenMP&rft.au=Shengfei+Liu&rft.au=Yunquan+Zhang&rft.au=Xiangzheng+Sun&rft.au=RongRong+Qiu&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424446001&rft.spage=659&rft.epage=665&rft_id=info:doi/10.1109%2FHPCC.2009.75&rft.externalDocID=5167060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424446001/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424446001/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424446001/sc.gif&client=summon&freeimage=true