Affective State Classification Using Bayesian Classifier

This paper elaborates the basic structure of a machine learning system in classifying affective state. There are several techniques in classifying the states depending on the type of input-output dataset. A proper selection of techniques is crucial in determining the success rate of the system predi...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Conference on Intelligent Systems, Modelling and Simulation.) pp. 154 - 158
Main Authors Ghazali, Aimi Shazwani, Sidek, Shahrul Naim, Saodah Wok
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2014
Subjects
Online AccessGet full text
ISSN2166-0662
DOI10.1109/ISMS.2014.32

Cover

Abstract This paper elaborates the basic structure of a machine learning system in classifying affective state. There are several techniques in classifying the states depending on the type of input-output dataset. A proper selection of techniques is crucial in determining the success rate of the system prediction. The paper proposes a machine learning technique in classifying affective states of human subjects by using Bayesian Network (BN). A structured experimental setup is designed to induce the affective states of the subjects by using a set of audiovisual stimulants. The affective states under study are happy, sad, and nervous. Preliminary results demonstrate the ability of the BN to predict human affective state with 86% accuracy.
AbstractList This paper elaborates the basic structure of a machine learning system in classifying affective state. There are several techniques in classifying the states depending on the type of input-output dataset. A proper selection of techniques is crucial in determining the success rate of the system prediction. The paper proposes a machine learning technique in classifying affective states of human subjects by using Bayesian Network (BN). A structured experimental setup is designed to induce the affective states of the subjects by using a set of audiovisual stimulants. The affective states under study are happy, sad, and nervous. Preliminary results demonstrate the ability of the BN to predict human affective state with 86% accuracy.
Author Sidek, Shahrul Naim
Saodah Wok
Ghazali, Aimi Shazwani
Author_xml – sequence: 1
  givenname: Aimi Shazwani
  surname: Ghazali
  fullname: Ghazali, Aimi Shazwani
  email: aimishazwanighazali@gmail.com
  organization: Dept. of Mechatron., Int. Islamic Univ. Malaysia, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Shahrul Naim
  surname: Sidek
  fullname: Sidek, Shahrul Naim
  email: snaim@iium.edu.my
  organization: Dept. of Mechatron., Int. Islamic Univ. Malaysia, Kuala Lumpur, Malaysia
– sequence: 3
  surname: Saodah Wok
  fullname: Saodah Wok
  email: wsaodah@iium.edu.my
  organization: Dept. of Mechatron., Int. Islamic Univ. Malaysia, Kuala Lumpur, Malaysia
BookMark eNo9jMFKw0AQQFeoYK25efOSH0ic3U1mZ461aC1UPMSey2YzkZWaSjYI_XsLiqf34MG7VrPhOIhStxpKrYHvN81LUxrQVWnNhcrYka4cs6Xa1TM1NxqxAERzpbKUPgBAg2Nimita9r2EKX5L3kx-knx18CnFPgY_xeOQ71Ic3vMHf5IU_fBfZbxRl70_JMn-uFC7p8e31XOxfV1vVsttEbWrpwIDtp0Ptu3QsemJUKqOKVgvrWgjDBY4tIKhrUg6fc6mrisEOjt6sQt19_uNIrL_GuOnH097ZwiInf0B4PZIoA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISMS.2014.32
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Consulter via IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479938575
1479938572
1479938580
9781479938582
EndPage 158
ExternalDocumentID 7280897
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-6c6bdac3bd6792f886e4d98c3aebe12e90309cbe6cb48ed16e42554608d166ae3
IEDL.DBID RIE
ISSN 2166-0662
IngestDate Wed Aug 27 02:05:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6c6bdac3bd6792f886e4d98c3aebe12e90309cbe6cb48ed16e42554608d166ae3
PageCount 5
ParticipantIDs ieee_primary_7280897
PublicationCentury 2000
PublicationDate 2014-Jan.
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.
PublicationDecade 2010
PublicationTitle Proceedings (International Conference on Intelligent Systems, Modelling and Simulation.)
PublicationTitleAbbrev ISMS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079898
Score 1.5935092
Snippet This paper elaborates the basic structure of a machine learning system in classifying affective state. There are several techniques in classifying the states...
SourceID ieee
SourceType Publisher
StartPage 154
SubjectTerms affective state
Bayes methods
Bayesian network
emotion detection
Emotion recognition
Learning (artificial intelligence)
machine learning system
Robots
Software
Support vector machines
Training
Title Affective State Classification Using Bayesian Classifier
URI https://ieeexplore.ieee.org/document/7280897
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjxVbcVv9uDR3XazcTZ7VLFUoSLUQm9lk8yCCK2U3YP-ejPZdiviwVtILkOGZCYz7-UBXIlcWpFaDJWSRSizJA4V5WkYG25jaXQhjzu6k2ccz-TT_GbeguuGC0NEHnxGEQ99L9-uTMWlsgFLKaksbUM7VVhztXb1lGHKUoisJRcjMrFeNDj3bPA4nUwZxyUj1hn5oaPiw8ioC5OtATV65D2qSh2Zr19_M_7Xwn3o7wh7wUsTig6gRctD6G4VG4LNAe6BuvXwDXfDBT7LDLwmJqOFvIMCDyAI7vJPYm5ls0rrPsxGD6_343CjnRC-uYSgDNGgtrlJtMU0E4VSSNJmyiS581osKOPWitGERktFNnbLggFrQ-XGmFNyBJ3laknHEKA7tmRcLoBFLo1xT_HCPZoKNEO0ikRxAj3eiMVH_T3GYrMHp39Pn8Ee-6GuYpxDp1xXdOHieqkvvUO_Aa4PoYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV8k4GRhCZxL84IiKqFpkJqK3WrEvsiIaQWVekAvx6f06YIMbBZ9nLyyb7z3Xt-ADdBKnQQaXSlFLkr4tB3JaWR6ytuY2VoQh53dJMh9ibiedqZ1uC24sIQkQWfkcdD28vXC7XiUtkdSynJONqB3Y4QolOytbYVlXbEYoisJucjMrU-qJDu8V1_lIwYySU8Vhr5oaRiA0m3AcnGhBI_8u6tisxTX79-Z_yvjQfQ2lL2nNcqGB1CjeZH0NhoNjjrI9wEeW8BHOaOc2ye6VhVTMYLWRc5FkLgPKSfxOzKapWWLZh0n8aPPXetnuC-mZSgcFFhplMVZhqjOMilRBI6lipMjd_8gGJurqiMUGVCkvbNcsCQtbY0Y0wpPIb6fDGnE3DQHFxSJhvAPBVKmcd4bp5NOao2aklBfgpN3ojZR_lBxmy9B2d_T1_DXm-cDGaD_vDlHPbZJ2VN4wLqxXJFlybKF9mVde43VVCk1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Intelligent+Systems%2C+Modelling+and+Simulation.%29&rft.atitle=Affective+State+Classification+Using+Bayesian+Classifier&rft.au=Ghazali%2C+Aimi+Shazwani&rft.au=Sidek%2C+Shahrul+Naim&rft.au=Saodah+Wok&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=2166-0662&rft.spage=154&rft.epage=158&rft_id=info:doi/10.1109%2FISMS.2014.32&rft.externalDocID=7280897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-0662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-0662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-0662&client=summon