Payoff suboptimality and errors in value induced by approximation of the Hamiltonian

Dynamic programming reduces the solution of optimal control problems to solution of the corresponding Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs). In the case of nonlinear deterministic systems, the HJB PDEs are fully nonlinear, first-order PDEs. Standard, grid-based techniques...

Full description

Saved in:
Bibliographic Details
Published in2008 47th IEEE Conference on Decision and Control pp. 3175 - 3180
Main Authors McEneaney, W.M., Deshpande, A.S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2008
Subjects
Online AccessGet full text
ISBN9781424431236
1424431239
ISSN0191-2216
DOI10.1109/CDC.2008.4739382

Cover

Abstract Dynamic programming reduces the solution of optimal control problems to solution of the corresponding Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs). In the case of nonlinear deterministic systems, the HJB PDEs are fully nonlinear, first-order PDEs. Standard, grid-based techniques to the solution of such PDEs are subject to the curse-of-dimensionality, where the computational costs grow exponentially with state-space dimension. Among the recently developed max-plus methods for solution of such PDEs, there is a curse-of-dimensionality-free algorithm. Such an algorithm can be applied in the case where the Hamiltonian takes the form of a pointwise maximum of a finite number of quadratic forms. In order to take advantage of this curse-of-dimensionality-free algorithm for more general HJB PDEs, we need to approximate the general Hamiltonian by a maximum of these quadratic forms. In doing so, one introduces some errors. In this work, we obtain a bound on the difference in solution of two HJB PDEs, as a function of a bound on the difference in the two Hamiltonians. Further, we obtain a bound on the suboptimality of the controller obtained from the solution of the approximate HJB PDE rather than from the original.
AbstractList Dynamic programming reduces the solution of optimal control problems to solution of the corresponding Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs). In the case of nonlinear deterministic systems, the HJB PDEs are fully nonlinear, first-order PDEs. Standard, grid-based techniques to the solution of such PDEs are subject to the curse-of-dimensionality, where the computational costs grow exponentially with state-space dimension. Among the recently developed max-plus methods for solution of such PDEs, there is a curse-of-dimensionality-free algorithm. Such an algorithm can be applied in the case where the Hamiltonian takes the form of a pointwise maximum of a finite number of quadratic forms. In order to take advantage of this curse-of-dimensionality-free algorithm for more general HJB PDEs, we need to approximate the general Hamiltonian by a maximum of these quadratic forms. In doing so, one introduces some errors. In this work, we obtain a bound on the difference in solution of two HJB PDEs, as a function of a bound on the difference in the two Hamiltonians. Further, we obtain a bound on the suboptimality of the controller obtained from the solution of the approximate HJB PDE rather than from the original.
Author Deshpande, A.S.
McEneaney, W.M.
Author_xml – sequence: 1
  givenname: W.M.
  surname: McEneaney
  fullname: McEneaney, W.M.
  organization: Dept. of Mech. & Aero. Eng., Univ. of California San Diego, San Diego, CA, USA
– sequence: 2
  givenname: A.S.
  surname: Deshpande
  fullname: Deshpande, A.S.
  organization: Dept. of Mech. & Aero. Eng., Univ. of California San Diego, San Diego, CA, USA
BookMark eNpVUEtLw0AYXLEF29q74GX_QOJ--0r2KNFaoaCHei77xJV0NySp2H9vwF48zQwzDMMs0Szl5BG6A1ICEPXQPDUlJaQuecUUq-kVWquqBk45Z0A5u_6nmZyhBQEFBaUg52hRqUJyoiTcoOUwfJGpiUi5QPt3fc4h4OFkcjfGo27jeMY6Oez7PvcDjgl_6_bkJ-JO1jtsJrvr-vwzhceYE84Bj58eb_UxtmNOUadbNA-6Hfz6giv0sXneN9ti9_by2jzuigiVGAupbS0CGCssUCO0VsaArhQTVFvljOACHJWGUukoMVZZRRi4ioXgmfTAVuj-rzd67w9dPy3qz4fLQewXuzBX2w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2008.4739382
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424431243
1424431247
EndPage 3180
ExternalDocumentID 4739382
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-6ac85f1bc5c12b5aa9bb1a79352ac9db5451d26b226d20bc9c9031d73ffe36e13
IEDL.DBID RIE
ISBN 9781424431236
1424431239
ISSN 0191-2216
IngestDate Wed Aug 27 02:14:12 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 79-640961
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6ac85f1bc5c12b5aa9bb1a79352ac9db5451d26b226d20bc9c9031d73ffe36e13
PageCount 6
ParticipantIDs ieee_primary_4739382
PublicationCentury 2000
PublicationDate 2008-Dec.
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-Dec.
PublicationDecade 2000
PublicationTitle 2008 47th IEEE Conference on Decision and Control
PublicationTitleAbbrev CDC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0001215762
Score 1.4140373
Snippet Dynamic programming reduces the solution of optimal control problems to solution of the corresponding Hamilton-Jacobi-Bellman partial differential equations...
SourceID ieee
SourceType Publisher
StartPage 3175
SubjectTerms Chromium
Computational efficiency
Dynamic programming
Error correction
Linearity
Nonlinear equations
Optimal control
Partial differential equations
Steady-state
Stochastic processes
Title Payoff suboptimality and errors in value induced by approximation of the Hamiltonian
URI https://ieeexplore.ieee.org/document/4739382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGLVKJ1g4WsQtD4ykTZzasedCVSEVdWilbpVPqUIkKE0k4NfzOUkPEAObEw-Orc_PL9_xjNA9sABivec-YjwOBkrrQGgAQ8MklVSR0Env0J-8sPF88LygixZ62NbCWGur5DPb880qlm8yXXpXWX_g5ds4AO5Bkoi6VmvPnxIBdd5JR_GwjlPC_0hASMQ2RV0xQLXYaD01z9v4ZSj6w8dhnWHZDPbj1pXq0Bkdo8nmc-tck9deWaie_vql5Pjf-Zyg7q68D0-3B9cpatn0DB3tKRN20GwqPzPn8LpUGYDKW8XWsUwNtnme5Wu8SrHXCbfQMGAdBivo9vrkH6u6GBJnDgO5xGPvQQGCCWbYRfPR02w4DpoLGIIVsIoiYFJz6iKlqY6IolIKpSIJO5oSqYVRwL4iQ5gCCmdIqLTQAjDCJLFzNmY2is9RO81Se4GwnydJuLIG-IvklkujBOWSWYABR80l6vj1Wb7XGhvLZmmu_n59jQ6rvI0qreQGtYu8tLdADgp1V1nFN4CostE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtSLH2D8tgePDraOjvaMElQgHCDhRvqZEONmxpaov9632wA1Hry126Fr8-7p0_fjKUK3wAKIcZ77IGKh15FKeVwBGOpIUEEl8a1wDv3ROBrMOk9zOq-hu00tjDGmSD4zLdcsYvk6UblzlbU7Tr6NAeDuUDhVdMtqrW8elQDI81Y8ivllpBJOJB4hQbQu6woBrPla7anqbyKYPm_37ntljmU13I97V4ptp3-ARusPLrNNXlp5Jlvq85eW439ndIia2wI_PNlsXUeoZuJjtP9Nm7CBphPxkViLV7lMAFZeC76ORayxSdMkXeFljJ1SuIGGBvvQWMJrp1D-vizLIXFiMdBLPHA-FKCYYIhNNOs_THsDr7qCwVsCr8i8SChGbSAVVQGRVAguZSDgn6ZEKK4l8K9Ak0gCidPEl4orDiihu6G1JoxMEJ6gepzE5hRhN0_SZdJoYDCCGSa05JSJyAAQWKrPUMOtz-KtVNlYVEtz_vfjG7Q7mI6Gi-Hj-PkC7RVZHEWSySWqZ2luroAqZPK6sJAvG2C2Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+47th+IEEE+Conference+on+Decision+and+Control&rft.atitle=Payoff+suboptimality+and+errors+in+value+induced+by+approximation+of+the+Hamiltonian&rft.au=McEneaney%2C+W.M.&rft.au=Deshpande%2C+A.S.&rft.date=2008-12-01&rft.pub=IEEE&rft.isbn=9781424431236&rft.issn=0191-2216&rft.spage=3175&rft.epage=3180&rft_id=info:doi/10.1109%2FCDC.2008.4739382&rft.externalDocID=4739382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon