Local Feature Based Online Mode Detection with Recurrent Neural Networks

In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neu...

Full description

Saved in:
Bibliographic Details
Published in2012 International Conference on Frontiers in Handwriting Recognition pp. 533 - 537
Main Authors Otte, S., Krechel, D., Liwicki, M., Dengel, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN9781467322621
1467322628
DOI10.1109/ICFHR.2012.229

Cover

More Information
Summary:In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.
ISBN:9781467322621
1467322628
DOI:10.1109/ICFHR.2012.229