Early Diagnosis of Diabetic Retinopathy in OCTA Images Based on Local Analysis of Retinal Blood Vessels and Foveal Avascular Zone

This paper introduces a diagnosis system for detecting early signs of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images. We developed a segmentation technique that was able to extract blood vessels from both retinal superficial and deep maps. It is based on a hig...

Full description

Saved in:
Bibliographic Details
Published in2018 24th International Conference on Pattern Recognition (ICPR) pp. 3886 - 3891
Main Authors Eladawi, Nabila, Elmogy, Mohammed, Fraiwan, Luay, Pichi, Francesco, Ghazal, Mohammed, Aboelfetouh, Ahmed, Riad, Alaa, Keynton, Robert, Schaal, Shlomit, El-Baz, Ayman
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
DOI10.1109/ICPR.2018.8546250

Cover

Abstract This paper introduces a diagnosis system for detecting early signs of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images. We developed a segmentation technique that was able to extract blood vessels from both retinal superficial and deep maps. It is based on a higher order joint Markov-Gibbs random field (MGRF) model, which combines both current and spatial appearance information of retinal blood vessels. To be able to train/test a support vector machine (SVM) classifier, three local features were extracted from the segmented images. These extracted features are the density and appearance of the retinal blood vessels in addition to the distance map of the foveal avascular zone (FAZ). Then, we used SVM with linear kernel to distinguish sub-clinical DR patients from normal cases. By using 105 subjects, the presented computer-aided diagnosis (CAD) system demonstrated an overall accuracy (ACC) of 97.3 % and a Dice similarity coefficient (DSC) of 97.9%.
AbstractList This paper introduces a diagnosis system for detecting early signs of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images. We developed a segmentation technique that was able to extract blood vessels from both retinal superficial and deep maps. It is based on a higher order joint Markov-Gibbs random field (MGRF) model, which combines both current and spatial appearance information of retinal blood vessels. To be able to train/test a support vector machine (SVM) classifier, three local features were extracted from the segmented images. These extracted features are the density and appearance of the retinal blood vessels in addition to the distance map of the foveal avascular zone (FAZ). Then, we used SVM with linear kernel to distinguish sub-clinical DR patients from normal cases. By using 105 subjects, the presented computer-aided diagnosis (CAD) system demonstrated an overall accuracy (ACC) of 97.3 % and a Dice similarity coefficient (DSC) of 97.9%.
Author Keynton, Robert
El-Baz, Ayman
Elmogy, Mohammed
Aboelfetouh, Ahmed
Fraiwan, Luay
Pichi, Francesco
Eladawi, Nabila
Ghazal, Mohammed
Riad, Alaa
Schaal, Shlomit
Author_xml – sequence: 1
  givenname: Nabila
  surname: Eladawi
  fullname: Eladawi, Nabila
  organization: Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt
– sequence: 2
  givenname: Mohammed
  surname: Elmogy
  fullname: Elmogy, Mohammed
  organization: Bioengineering Department, Speed School of Engineering, University of Louisville, Louisville, 40292, USA
– sequence: 3
  givenname: Luay
  surname: Fraiwan
  fullname: Fraiwan, Luay
  organization: Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
– sequence: 4
  givenname: Francesco
  surname: Pichi
  fullname: Pichi, Francesco
  organization: Cleveland Clinic, Abu Dhabi, UAE
– sequence: 5
  givenname: Mohammed
  surname: Ghazal
  fullname: Ghazal, Mohammed
  organization: Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
– sequence: 6
  givenname: Ahmed
  surname: Aboelfetouh
  fullname: Aboelfetouh, Ahmed
  organization: Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt
– sequence: 7
  givenname: Alaa
  surname: Riad
  fullname: Riad, Alaa
  organization: Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt
– sequence: 8
  givenname: Robert
  surname: Keynton
  fullname: Keynton, Robert
  organization: Bioengineering Department, Speed School of Engineering, University of Louisville, Louisville, 40292, USA
– sequence: 9
  givenname: Shlomit
  surname: Schaal
  fullname: Schaal, Shlomit
  organization: Department of Ophthalmology & Visual Sciences, University of Massachusetts Medical School, Worcester, MA, USA
– sequence: 10
  givenname: Ayman
  surname: El-Baz
  fullname: El-Baz, Ayman
  organization: Bioengineering Department, Speed School of Engineering, University of Louisville, Louisville, 40292, USA
BookMark eNotkE9PAjEQxWuiiYp8AOOlXwBst3-2e4QVlIQEQ9CDFzLdDrimtGSLJHv0m7sol5nMy7yXl98tuQwxICH3nA05Z8XjrHxdDjPGzdAoqTPFLki_yA1XwmiRGyOuST-lL8ZYpo2Qgt2Qnwk0vqVPNWxDTHWicXM6LB7qii67GeIeDp8trQNdlKsRne1gi4mOIaGjMdB5rMDTUQDfnu1_rk4b-xgdfceU0CcKwdFpPOLp-Qip-vbQ0I-u_x252oBP2D_vHnmbTlbly2C-eJ6Vo_mg5rk6DDSTmXKoCmaMFGAhR5Bci0xW3Dqm0Fmb6UI6Y5XKpVGWFdI4zCq9qToCokce_nNrRFzvm3oHTbs-gxK_E_xf6A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2018.8546250
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538637883
153863788X
EndPage 3891
ExternalDocumentID 8546250
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-60425de5908843aba7ea416324c1bd05edbb2694d8b557485b0948de2c6fc1533
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-60425de5908843aba7ea416324c1bd05edbb2694d8b557485b0948de2c6fc1533
PageCount 6
ParticipantIDs ieee_primary_8546250
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle 2018 24th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683430
Score 2.129652
Snippet This paper introduces a diagnosis system for detecting early signs of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images....
SourceID ieee
SourceType Publisher
StartPage 3886
SubjectTerms Biomedical imaging
Blood vessels
Feature extraction
Image segmentation
Retina
Support vector machines
Two dimensional displays
Title Early Diagnosis of Diabetic Retinopathy in OCTA Images Based on Local Analysis of Retinal Blood Vessels and Foveal Avascular Zone
URI https://ieeexplore.ieee.org/document/8546250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oJ0-oYHxnDh5toe1uuxwFJWBECQFDvJDuowlRW2OLid785-70gdF48NZsOm2zs9v5ZuebGULOKO8wafwGK4g838LAkBVKR1iRZr6MhFQ6L2A6uvUHM3o9Z_MNcr7OhdFa5-QzbeNlHstXiVzhUVmLM2rgunHQN4OgU-Rqrc9TXJ971KsCl0670xr2xhPkbnG7lPvRQCW3H_06GVVvLmgjj_YqE7b8-FWU8b-ftk2a35l6MF7boB2yoeNdUi-hJZQbN22Qz7yQMVwWxLplCkkEBRlmKWGCac8J9iZ-h2UMd73pBQyfzY8mha4xcgqSGG7Q5kFVwgTFcykz1kXqO9xjDfKnFMJYQT9503hzxXKFhyTWTTLrX017A6vsvmAtDaTILB-3s1EVEqGoF4ow0CGiN5caXao200oITINVXDAWUM6E8RS50q70I4koco_UYvP4fQKCc6VC7kijeMoYE8oNfelwobTHROQckAbO6OKlKLCxKCfz8O_hI7KFWi1YeMeklr2u9IlBBpk4zZfEF3Y8uck
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOgJFYxv5-DRAm132-UoKAEFJAQM8UK6jyaN2hoBE735z91pC0bjwVuz6bTNzm7nm51vZgg5p7zBpPEbLD90PQsDQ1YgbWGFmnkyFFLptIBpf-B1JvRmyqYFcrHOhdFap-QzXcXLNJavErnEo7IaZ9TAdeOgbzDjVfhZttb6RMXxuEvdVejSrjdq3dZwhOwtXs0lf7RQSS1Iu0T6q3dnxJHH6nIhqvLjV1nG_37cNql85-rBcG2FdkhBx7uklINLyLfuvEw-01LGcJVR66I5JCFkdJhIwggTnxPsTvwOUQx3rfEldJ_Nr2YOTWPmFCQx9NDqwaqICYqnUmasieR3uMcq5E9zCGIF7eRN480rnis8JLGukEn7etzqWHn_BSsyoGJhebihjbKQCkXdQAS-DhC_OdRoU9WZVkJgIqzigjGfciaMr8iVdqQXSsSRe6QYm8fvExCcKxVwWxrVU8aYUE7gSZsLpV0mQvuAlHFGZy9ZiY1ZPpmHfw-fkc3OuN-b9bqD2yOyhRrOOHnHpLh4XeoTgxMW4jRdHl9kAb0a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+24th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Early+Diagnosis+of+Diabetic+Retinopathy+in+OCTA+Images+Based+on+Local+Analysis+of+Retinal+Blood+Vessels+and+Foveal+Avascular+Zone&rft.au=Eladawi%2C+Nabila&rft.au=Elmogy%2C+Mohammed&rft.au=Fraiwan%2C+Luay&rft.au=Pichi%2C+Francesco&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=3886&rft.epage=3891&rft_id=info:doi/10.1109%2FICPR.2018.8546250&rft.externalDocID=8546250