Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making

In this paper, we consider the application of dynamic Bayesian networks to the prognostic modelling of equipment in order to better inform maintenance decision-making. We provide a brief overview of Bayesian networks and their application to reliability modelling. An example is then provided in whic...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Industrial Engineering and Engineering Management pp. 1155 - 1159
Main Authors McNaught, K.R., Zagorecki, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2009
Subjects
Online AccessGet full text
ISBN1424448697
9781424448692
ISSN2157-3611
DOI10.1109/IEEM.2009.5372973

Cover

Abstract In this paper, we consider the application of dynamic Bayesian networks to the prognostic modelling of equipment in order to better inform maintenance decision-making. We provide a brief overview of Bayesian networks and their application to reliability modelling. An example is then provided in which an equipment is considered to be in one of six states and there are two imperfect condition monitoring indicators available to provide evidence about the equipment's true state which tends to deteriorate over time. With this example, we show how the equipment's reliability decays over time in the situation where repair is not possible and then how a simple change to the model allows us to represent different maintenance policies for repairable equipment.
AbstractList In this paper, we consider the application of dynamic Bayesian networks to the prognostic modelling of equipment in order to better inform maintenance decision-making. We provide a brief overview of Bayesian networks and their application to reliability modelling. An example is then provided in which an equipment is considered to be in one of six states and there are two imperfect condition monitoring indicators available to provide evidence about the equipment's true state which tends to deteriorate over time. With this example, we show how the equipment's reliability decays over time in the situation where repair is not possible and then how a simple change to the model allows us to represent different maintenance policies for repairable equipment.
Author McNaught, K.R.
Zagorecki, A.
Author_xml – sequence: 1
  givenname: K.R.
  surname: McNaught
  fullname: McNaught, K.R.
  organization: Dept. of Eng. Syst. & Manage., Cranfield Univ., Cranfield, UK
– sequence: 2
  givenname: A.
  surname: Zagorecki
  fullname: Zagorecki, A.
  organization: Dept. of Eng. Syst. & Manage., Cranfield Univ., Cranfield, UK
BookMark eNotUMtOAjEUrRESAecDjJv-wGAf07ntUgkqCcaNbCWdPkhlpiXTSQx_7xBZnZzn4szRJKboEHqgZEkpUU-b9fpjyQhRS8GBKeA3qFAgacWqqpJA5C2aX0mtYIJmjAooeU3pFM0vPUWEJHCHipx_CCGUyZqpeoa-dznEA7bnqLtg8Is-uxx0xNENv6k_ZuxTj099OsSUhzHQJeva9lIZEg5xdDvc6RAHF3U0DltnQg4pjuJxTN2jqddtdsUVF2j3uv5avZfbz7fN6nlbBgpiKIUHVlFbe1CEUeZZw00DwljOFTAvfaO4F9Ia0ziQgiqwVhBuuLRVLaTgC_T4vxucc_tTHzrdn_fXr_gfiR9b2w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEEM.2009.5372973
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424448708
1424448700
EndPage 1159
ExternalDocumentID 5372973
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-5f7241d6f790212f2b3cb75cd33972f8fb93f58dccbe785197dd503c38d465853
IEDL.DBID RIE
ISBN 1424448697
9781424448692
ISSN 2157-3611
IngestDate Wed Aug 27 02:44:43 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCN 2009905807
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-5f7241d6f790212f2b3cb75cd33972f8fb93f58dccbe785197dd503c38d465853
PageCount 5
ParticipantIDs ieee_primary_5372973
PublicationCentury 2000
PublicationDate 2009-Dec.
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-Dec.
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Industrial Engineering and Engineering Management
PublicationTitleAbbrev IEEM
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286296
ssj0000453127
Score 1.8841481
Snippet In this paper, we consider the application of dynamic Bayesian networks to the prognostic modelling of equipment in order to better inform maintenance...
SourceID ieee
SourceType Publisher
StartPage 1155
SubjectTerms Artificial intelligence
Bayesian methods
Condition monitoring
Condition-based maintenance
Decision making
Fault diagnosis
Fault trees
Graphical models
Maintenance
probabilistic graphical model
Probability distribution
reliability
Systems engineering and theory
Title Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making
URI https://ieeexplore.ieee.org/document/5372973
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGLXaTrBwtIhbHhhJm8TxkRVEVSEVMVCpE1V8SQiRIJoO8Ov5fLQcYmBLvCRxHL2Xz997D6GLDBaBS9JOKOFFUhS0TEpeskTqTFaWlFL69IbpHZvMits5nXfQ5UYLY4zxzWdm6A79Xr5u1MqVykbU7TFx0kVdLljQam3qKUBNSBYdLUN9Bbi6j-cCUIPviGXZWtdVCBbsAJ3dUzzP445nlpYj-M2aBifLeMEfySseeMY7aLq-5dBv8jxctXKoPn65Of73mXbR4Evih-834LWHOqbeR9vf3An76NG3E2AdMuvxVfVunOIS16FzfImB72LX31U3zuwZ-1Adp27HbYODISt-qZwfhTP1MFjHOB8YdPX5AZqNbx6uJ0mMY0iegGO0CbUc4F4zCy8XAM_mkijJqdIEOE1uhZUlsVRopaThwglitaYpUUToAngOJQeoVze1OUTYGkGr1AiWVs4hrpKSidSknJMKkFSxI9R3M7V4DY4bizhJx38Pn6CtPKY6pNkp6rVvK3MGVKGV536NfAJpRrZh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALj4J444GRtEkc28kKoirQVAyt1Ikqjh0JIRIE6QC_nnPslocY2BIPediO7svdfd8HcB7gJjBO2h6jIvKiiCVeIhLuSRXIrKCJlI17Qzrig0l0O2XTFlwsuTBa66b5THfNYVPLV1U-N6myHjM1JkFXYJVFeFnL1lpmVBCc0MBpWtoMC6L1xqALwxp-STwIFsyuKOZWENAIPrnz0NU8Az_p4Y9WarUs3S1_eK80oae_CenioW3HyVN3Xstu_vFLz_G_b7UFu18kP3K_DF_b0NLlDmx80yfswEPTUECUda0nl9m7NpxLUtre8TeCiJeYDq-yMnLPpLHVMfx2UlfESrKS58woUhhZD02UM_TBQZOh34VJ_3p8NfCcIYP3iCij9lghMOArXuDyYsgrQklzKViuKKKasIgLmdCCxSrPpRaxocQqxXya01hFiHQY3YN2WZV6H0ihY5b5OuZ-ZjTiMil57GtfCJphLM35AXTMTM1erObGzE3S4d_DZ7A2GKfD2fBmdHcE66HzePCDY2jXr3N9gsChlqfNfvkEKj-5rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Industrial+Engineering+and+Engineering+Management&rft.atitle=Using+dynamic+Bayesian+networks+for+prognostic+modelling+to+inform+maintenance+decision+making&rft.au=McNaught%2C+K.R.&rft.au=Zagorecki%2C+A.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424448692&rft.issn=2157-3611&rft.spage=1155&rft.epage=1159&rft_id=info:doi/10.1109%2FIEEM.2009.5372973&rft.externalDocID=5372973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-3611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-3611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-3611&client=summon