Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms
In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands...
        Saved in:
      
    
          | Published in | 2007 IEEE Congress on Evolutionary Computation pp. 284 - 290 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2007
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1424413397 9781424413393  | 
| ISSN | 1089-778X | 
| DOI | 10.1109/CEC.2007.4424483 | 
Cover
| Abstract | In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOsvm is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GAsvm and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung). | 
    
|---|---|
| AbstractList | In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOsvm is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GAsvm and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung). | 
    
| Author | Garcia-Nieto, J. Talbi, E.-G. Alba, E. Jourdan, L.  | 
    
| Author_xml | – sequence: 1 givenname: E. surname: Alba fullname: Alba, E. organization: Univ. de Malaga, Malaga – sequence: 2 givenname: J. surname: Garcia-Nieto fullname: Garcia-Nieto, J. organization: Univ. de Malaga, Malaga – sequence: 3 givenname: L. surname: Jourdan fullname: Jourdan, L. – sequence: 4 givenname: E.-G. surname: Talbi fullname: Talbi, E.-G.  | 
    
| BookMark | eNo9UMtOwkAUHSMmArI3cTM_0HLn5bRL0mA1wWBEjTsynbmFMWVqOrDg761IPJvzSm5uzogMQhuQkFsGKWOQT4t5kXIAnUrJpczEBRmxX8WEBLj8NyLXAzJkkOWJ1tnnNZnE-AU9pJJMyyF5LTEgjdig3fs2UB-oNcFiR21jYvS1t-ZUHKIPG_qyWk5XH8_UBEfL2Uluj1XnHTXNpu38fruLN-SqNk3EyZnH5P1h_lY8Jotl-VTMFolnWu0TlVl2n4NT2tVC2_4hDbWt6j7QjGNmnco5MM4tA4ccOUhpVW6wshxcrcSY3P3d9Yi4_u78znTH9XkP8QN35FJl | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CEC.2007.4424483 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 1424413400 9781424413409  | 
    
| EndPage | 290 | 
    
| ExternalDocumentID | 4424483 | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1  | 
    
| ID | FETCH-LOGICAL-i175t-58c1690d57df37c45470fcbfd57712e8cd5920122c10de2e2044c59aebc20df53 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 1424413397 9781424413393  | 
    
| ISSN | 1089-778X | 
    
| IngestDate | Wed Aug 27 01:41:20 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-58c1690d57df37c45470fcbfd57712e8cd5920122c10de2e2044c59aebc20df53 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_4424483 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-Sept. | 
    
| PublicationDateYYYYMMDD | 2007-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2007 text: 2007-Sept.  | 
    
| PublicationDecade | 2000 | 
    
| PublicationTitle | 2007 IEEE Congress on Evolutionary Computation | 
    
| PublicationTitleAbbrev | CEC | 
    
| PublicationYear | 2007 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000454174 ssj0014519  | 
    
| Score | 2.1641674 | 
    
| Snippet | In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 284 | 
    
| SubjectTerms | Cancer DNA Filters Gene expression Genetic algorithms Neoplasms Particle swarm optimization Space exploration Support vector machine classification Support vector machines  | 
    
| Title | Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/4424483 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-Ak15QwfhODx4ddF33OhoCEhOUiBhupPvaAlGHgXHQv959e-AjHrx1TZZtbZd-_X6Pj5BLA1JIrrglbelYQgbMCo0fWSAdHRrP8BAwNTC48_pjcTtxJxVytdXCaK0z8pluYTPD8tUSNpgqawtUZQVOlVT9wMu1Wtt8ClrJ2RjKFAgC2qbk5PowjSCDSSnqSs9kuRcgej0V106JX7Kw3el2cmPD4mE_qq5km06vTgbl6-Zck-fWJola8PHLyfG_37NHml_yPjrcblz7pKLjA1Iv6zvQ4nc_ILvfzAob5AEdquk6q5uTTiZdxBRwyawoYASOlKNslilS6Wd0OLpvj54GVMaK3lxnzfk7ysOofJktV4tk_rpuknGv-9jpW0VFBmuRhhmJ5QaAsJpyfWUcH9AMjBmITNrh21wHoNyQI1gHNlOaa86EADeUOgLOlHGdQ1KLl7E-IlRhpXW8xeNKpMc-ySMtQAeeYhIiJo9JAwds-pabbkyLsTr5u_uU7ORJVyR_nZFastro8zRaSKKLbJl8AgF4t38 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-ieFAvKGB824NHB6PrXkdDQFSGRMBwI13bAVGHgXHQv959e-AjHrx1TZZtbZd-_X6PD-AyEJxxKqnG69zQGHd0zQ1sXxPcUG5gBdQVmBrwulZ7yO5G5mgDrtZaGKVUQj5TVWwmWL6cixWmymoMVVmOsQlbJmPMTNVa64wKmsnVMZjJMAQ0Tknp9W4cQzqjXNYVn8pSN0B0e8qujRzB1N1ao9lIrQ2zx_2ou5JsO60iePkLp2yT5-oq8qvi45eX43-_aA8qXwI_0ltvXfuwocISFPMKDyT74Uuw-82usAyP6FFNlknlnHg6ySwkAhfNggiMwZF0lMwzQTL9hPT6D7X-k0d4KMnNddKcvqNAjPCXyXwxi6avywoMW81Bo61lNRm0WRxoRJrpCATWpGnLwLAF2oHpgfCDuMOuU-UIaboU4TpR16WiiuqMCdPlyhdUl4FpHEAhnIfqEIjEWut4i0Uliw9-nPqKCeVYUufC1_kRlHHAxm-p7cY4G6vjv7svYLs98Drjzm33_gR20hQsUsFOoRAtVuosjh0i_zxZMp_T27rM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=Gene+selection+in+cancer+classification+using+PSO%2FSVM+and+GA%2FSVM+hybrid+algorithms&rft.au=Alba%2C+E.&rft.au=Garcia-Nieto%2C+J.&rft.au=Jourdan%2C+L.&rft.au=Talbi%2C+E.-G.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424413393&rft.issn=1089-778X&rft.spage=284&rft.epage=290&rft_id=info:doi/10.1109%2FCEC.2007.4424483&rft.externalDocID=4424483 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |