Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms

In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Congress on Evolutionary Computation pp. 284 - 290
Main Authors Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.-G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2007
Subjects
Online AccessGet full text
ISBN1424413397
9781424413393
ISSN1089-778X
DOI10.1109/CEC.2007.4424483

Cover

Abstract In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOsvm is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GAsvm and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung).
AbstractList In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the classification of high dimensional microarray data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOsvm is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GAsvm and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung).
Author Garcia-Nieto, J.
Talbi, E.-G.
Alba, E.
Jourdan, L.
Author_xml – sequence: 1
  givenname: E.
  surname: Alba
  fullname: Alba, E.
  organization: Univ. de Malaga, Malaga
– sequence: 2
  givenname: J.
  surname: Garcia-Nieto
  fullname: Garcia-Nieto, J.
  organization: Univ. de Malaga, Malaga
– sequence: 3
  givenname: L.
  surname: Jourdan
  fullname: Jourdan, L.
– sequence: 4
  givenname: E.-G.
  surname: Talbi
  fullname: Talbi, E.-G.
BookMark eNo9UMtOwkAUHSMmArI3cTM_0HLn5bRL0mA1wWBEjTsynbmFMWVqOrDg761IPJvzSm5uzogMQhuQkFsGKWOQT4t5kXIAnUrJpczEBRmxX8WEBLj8NyLXAzJkkOWJ1tnnNZnE-AU9pJJMyyF5LTEgjdig3fs2UB-oNcFiR21jYvS1t-ZUHKIPG_qyWk5XH8_UBEfL2Uluj1XnHTXNpu38fruLN-SqNk3EyZnH5P1h_lY8Jotl-VTMFolnWu0TlVl2n4NT2tVC2_4hDbWt6j7QjGNmnco5MM4tA4ccOUhpVW6wshxcrcSY3P3d9Yi4_u78znTH9XkP8QN35FJl
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2007.4424483
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1424413400
9781424413409
EndPage 290
ExternalDocumentID 4424483
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-58c1690d57df37c45470fcbfd57712e8cd5920122c10de2e2044c59aebc20df53
IEDL.DBID RIE
ISBN 1424413397
9781424413393
ISSN 1089-778X
IngestDate Wed Aug 27 01:41:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-58c1690d57df37c45470fcbfd57712e8cd5920122c10de2e2044c59aebc20df53
PageCount 7
ParticipantIDs ieee_primary_4424483
PublicationCentury 2000
PublicationDate 2007-Sept.
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-Sept.
PublicationDecade 2000
PublicationTitle 2007 IEEE Congress on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454174
ssj0014519
Score 2.1641674
Snippet In this work we compare the use of a particle swarm optimization (PSO) and a genetic algorithm (GA) (both augmented with support vector machines SVM) for the...
SourceID ieee
SourceType Publisher
StartPage 284
SubjectTerms Cancer
DNA
Filters
Gene expression
Genetic algorithms
Neoplasms
Particle swarm optimization
Space exploration
Support vector machine classification
Support vector machines
Title Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms
URI https://ieeexplore.ieee.org/document/4424483
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-Ak15QwfhODx4ddF33OhoCEhOUiBhupPvaAlGHgXHQv959e-AjHrx1TZZtbZd-_X6Pj5BLA1JIrrglbelYQgbMCo0fWSAdHRrP8BAwNTC48_pjcTtxJxVytdXCaK0z8pluYTPD8tUSNpgqawtUZQVOlVT9wMu1Wtt8ClrJ2RjKFAgC2qbk5PowjSCDSSnqSs9kuRcgej0V106JX7Kw3el2cmPD4mE_qq5km06vTgbl6-Zck-fWJola8PHLyfG_37NHml_yPjrcblz7pKLjA1Iv6zvQ4nc_ILvfzAob5AEdquk6q5uTTiZdxBRwyawoYASOlKNslilS6Wd0OLpvj54GVMaK3lxnzfk7ysOofJktV4tk_rpuknGv-9jpW0VFBmuRhhmJ5QaAsJpyfWUcH9AMjBmITNrh21wHoNyQI1gHNlOaa86EADeUOgLOlHGdQ1KLl7E-IlRhpXW8xeNKpMc-ySMtQAeeYhIiJo9JAwds-pabbkyLsTr5u_uU7ORJVyR_nZFastro8zRaSKKLbJl8AgF4t38
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-ieFAvKGB824NHB6PrXkdDQFSGRMBwI13bAVGHgXHQv959e-AjHrx1TZZtbZd-_X6PD-AyEJxxKqnG69zQGHd0zQ1sXxPcUG5gBdQVmBrwulZ7yO5G5mgDrtZaGKVUQj5TVWwmWL6cixWmymoMVVmOsQlbJmPMTNVa64wKmsnVMZjJMAQ0Tknp9W4cQzqjXNYVn8pSN0B0e8qujRzB1N1ao9lIrQ2zx_2ou5JsO60iePkLp2yT5-oq8qvi45eX43-_aA8qXwI_0ltvXfuwocISFPMKDyT74Uuw-82usAyP6FFNlknlnHg6ySwkAhfNggiMwZF0lMwzQTL9hPT6D7X-k0d4KMnNddKcvqNAjPCXyXwxi6avywoMW81Bo61lNRm0WRxoRJrpCATWpGnLwLAF2oHpgfCDuMOuU-UIaboU4TpR16WiiuqMCdPlyhdUl4FpHEAhnIfqEIjEWut4i0Uliw9-nPqKCeVYUufC1_kRlHHAxm-p7cY4G6vjv7svYLs98Drjzm33_gR20hQsUsFOoRAtVuosjh0i_zxZMp_T27rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=Gene+selection+in+cancer+classification+using+PSO%2FSVM+and+GA%2FSVM+hybrid+algorithms&rft.au=Alba%2C+E.&rft.au=Garcia-Nieto%2C+J.&rft.au=Jourdan%2C+L.&rft.au=Talbi%2C+E.-G.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424413393&rft.issn=1089-778X&rft.spage=284&rft.epage=290&rft_id=info:doi/10.1109%2FCEC.2007.4424483&rft.externalDocID=4424483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon