Machine Learning Methods Applying for Hydraulic System States Classification

The article describes the analysis of a dataset on the states of the hydraulic system of the aircraft and an attempt to classify error in valve switching modes for further research of the possibility of predicting failure or the need to repair the valves of the system

Saved in:
Bibliographic Details
Published in2019 Systems of Signals Generating and Processing in the Field of on Board Communications pp. 1 - 4
Main Authors Bykov, A. D., Voronov, V. I., Voronova, L. I.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2019
Subjects
Online AccessGet full text
DOI10.1109/SOSG.2019.8706722

Cover

Abstract The article describes the analysis of a dataset on the states of the hydraulic system of the aircraft and an attempt to classify error in valve switching modes for further research of the possibility of predicting failure or the need to repair the valves of the system
AbstractList The article describes the analysis of a dataset on the states of the hydraulic system of the aircraft and an attempt to classify error in valve switching modes for further research of the possibility of predicting failure or the need to repair the valves of the system
Author Voronov, V. I.
Voronova, L. I.
Bykov, A. D.
Author_xml – sequence: 1
  givenname: A. D.
  surname: Bykov
  fullname: Bykov, A. D.
  organization: Moscow Technical University of Communication and Informatics, Moscow, Russia
– sequence: 2
  givenname: V. I.
  surname: Voronov
  fullname: Voronov, V. I.
  organization: Moscow Technical University of Communication and Informatics, Moscow, Russia
– sequence: 3
  givenname: L. I.
  surname: Voronova
  fullname: Voronova, L. I.
  organization: Moscow Technical University of Communication and Informatics, Moscow, Russia
BookMark eNotj99KwzAcRiMoqLMPIN7kBTp_-dckl6PoJnTsono90jRxkS4tTbzo28twVx8cDge-R3Qbx-gQeiawJgT0a3tot2sKRK-VhEpSeoMKLRWRVBGooNL3qEjpBwBopQQB_oCavbGnEB1unJljiN947_Jp7BPeTNOwXIAfZ7xb-tn8DsHidknZnXGbTXYJ14NJKfhgTQ5jfEJ33gzJFdddoa_3t896VzaH7Ue9acpApMilEJqBrLgwlllNOtop3mvue98RD1JIEFxU1gmjuRTKU9tTxi4ekVZzwVbo5b8bnHPHaQ5nMy_H62f2B3JsTe4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SOSG.2019.8706722
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728106069
1728106060
EndPage 4
ExternalDocumentID 8706722
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-559307645ac3c91b2b84d94fdfb1f075705456ce5a94758f2cd2331b2b17c9453
IEDL.DBID RIE
IngestDate Wed Aug 27 02:47:08 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-559307645ac3c91b2b84d94fdfb1f075705456ce5a94758f2cd2331b2b17c9453
PageCount 4
ParticipantIDs ieee_primary_8706722
PublicationCentury 2000
PublicationDate 2019-March
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-March
PublicationDecade 2010
PublicationTitle 2019 Systems of Signals Generating and Processing in the Field of on Board Communications
PublicationTitleAbbrev SOSG
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685104
Score 1.7348999
Snippet The article describes the analysis of a dataset on the states of the hydraulic system of the aircraft and an attempt to classify error in valve switching modes...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Aircraft
classification
comparison
gradient boosting
hydraulic system
Machine learning
nearest neighbor algorithm
Sensors
support vector machine
Support vector machines
Training
Valves
Title Machine Learning Methods Applying for Hydraulic System States Classification
URI https://ieeexplore.ieee.org/document/8706722
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyaLW3StDmLc4hVYQ52G_lVGcomsz3oX29eUieKB2-ltLTktXlf8r73fQid54xrlTBNZGUl4YV1RBpKSSWpMCJL_XwY2BZ3YjzlN7Ns1kEXm14Y51wgn7kBHIZavl2ZBrbKhlCTy1M_4W7lhYi9Wpv9lFR47EB5W7hMqBxO7ifXwN3yH0O874eBSsgfox1Ufj050kaeB02tB-bjlyjjf19tF_W_O_XwwyYH7aGOW_bQbRkYkg634qlPuAw-0W8YMCf0NWEPVfH43a5V87IwOMqW4wg8cfDJBAZRCFofTUdXj5dj0romkIWHAjXxSwT_3wqeKcOMTHSqC24lr2ylk8oDhJwCaDIuU5L7xUKVGpsyBtcluZE8Y_uou1wt3QHCoF3GCuGkMOCSrrTILVXUeYiVqMKKQ9SDkZi_RmGMeTsIR3-fPkbbEI1I4DpB3XrduFOf0Wt9FkL5CWRfn_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLUqGGAC1CLeeGDErRM7TjwjSoCmILWVulV-BVWgFpVkgK_Hj1AEYmCLokSJfBPfY99zzwHgIiVUiohIxEvNEc20QVxhjEqOmWJJbOdDz7YYsnxC76bJtAUu170wxhhPPjNdd-hr-XqpardV1nM1uTS2E-5mQilNQrfWekclZhY9YNqULiPMe6OH0Y1jb9nPIdz5w0LFZ5D-Dii-nh2II8_dupJd9fFLlvG_L7cLOt-9evBxnYX2QMss2mBQeI6kgY186hMsvFP0G3So03U2QQtWYf6uV6J-mSsYhMthgJ7QO2U6DpEPWwdM-tfjqxw1vglobsFAhewiwf65jCZCEcUjGcuMak5LXcqotBAhxQ42KZMITu1yoYyVjglx10Wp4jQh-2BjsVyYAwCdehnJmOFMOZ90IVmqscDGgqxIZJodgrYbidlrkMaYNYNw9Pfpc7CVj4vBbHA7vD8G2y4ygc51AjaqVW1ObX6v5JkP6yf2m6NB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+Systems+of+Signals+Generating+and+Processing+in+the+Field+of+on+Board+Communications&rft.atitle=Machine+Learning+Methods+Applying+for+Hydraulic+System+States+Classification&rft.au=Bykov%2C+A.+D.&rft.au=Voronov%2C+V.+I.&rft.au=Voronova%2C+L.+I.&rft.date=2019-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FSOSG.2019.8706722&rft.externalDocID=8706722