Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications

Convolutional neural networks (CNN) provide state-of-the-art results in a wide variety of machine learning (ML) applications, ranging from image classification to speech recognition. However, they are very computationally intensive and require huge amounts of storage. Recent work strived towards red...

Full description

Saved in:
Bibliographic Details
Published inDigest of technical papers - IEEE International Solid-State Circuits Conference pp. 488 - 490
Main Authors Biswas, Avishek, Chandrakasan, Anantha P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2018
Subjects
Online AccessGet full text
ISSN2376-8606
DOI10.1109/ISSCC.2018.8310397

Cover

Abstract Convolutional neural networks (CNN) provide state-of-the-art results in a wide variety of machine learning (ML) applications, ranging from image classification to speech recognition. However, they are very computationally intensive and require huge amounts of storage. Recent work strived towards reducing the size of the CNNs: [1] proposes a binary-weight-network (BWN), where the filter weights (w i 's) are ±1 (with a common scaling factor per filter: α). This leads to a significant reduction in the amount of storage required for the W i 's, making it possible to store them entirely on-chip. However, in a conventional all-digital implementation [2, 3], reading the wj i s and the partial sums from the embedded SRAMs require a lot of data movement per computation, which is energy-hungry. To reduce data-movement, and associated energy, we present an SRAM-embedded convolution architecture (Fig. 31.1.1), which does not require reading the w i 's explicitly from the memory. Prior work on embedded ML classifiers have focused on 1b outputs [4] or a small number of output classes [5], both of which are not sufficient for CNNs. This work uses 7b inputs/outputs, which is sufficient to maintain good accuracy for most of the popular CNNs [1]. The convolution operation is implemented as voltage averaging (Fig. 31.1.1), since the wj's are binary, while the averaging factor (1/N) implements the weight-coefficient α (with a new scaling factor, M, implemented off-chip).
AbstractList Convolutional neural networks (CNN) provide state-of-the-art results in a wide variety of machine learning (ML) applications, ranging from image classification to speech recognition. However, they are very computationally intensive and require huge amounts of storage. Recent work strived towards reducing the size of the CNNs: [1] proposes a binary-weight-network (BWN), where the filter weights (w i 's) are ±1 (with a common scaling factor per filter: α). This leads to a significant reduction in the amount of storage required for the W i 's, making it possible to store them entirely on-chip. However, in a conventional all-digital implementation [2, 3], reading the wj i s and the partial sums from the embedded SRAMs require a lot of data movement per computation, which is energy-hungry. To reduce data-movement, and associated energy, we present an SRAM-embedded convolution architecture (Fig. 31.1.1), which does not require reading the w i 's explicitly from the memory. Prior work on embedded ML classifiers have focused on 1b outputs [4] or a small number of output classes [5], both of which are not sufficient for CNNs. This work uses 7b inputs/outputs, which is sufficient to maintain good accuracy for most of the popular CNNs [1]. The convolution operation is implemented as voltage averaging (Fig. 31.1.1), since the wj's are binary, while the averaging factor (1/N) implements the weight-coefficient α (with a new scaling factor, M, implemented off-chip).
Author Chandrakasan, Anantha P.
Biswas, Avishek
Author_xml – sequence: 1
  givenname: Avishek
  surname: Biswas
  fullname: Biswas, Avishek
  organization: Massachusetts Institute of Technology, Cambridge, MA
– sequence: 2
  givenname: Anantha P.
  surname: Chandrakasan
  fullname: Chandrakasan, Anantha P.
  organization: Massachusetts Institute of Technology, Cambridge, MA
BookMark eNotkEtOwzAURQ0CibawAZh4Ay7PTu3YzKqIT6VSJArjyomfW6PEiZKUqhPWTlQY3SPdz-COyUWsIxJyy2HKOZj7xXqdZVMBXE91wiEx6RkZcwkGZmYG_JyMRJIqphWoKzLuui8AkEbpEfnJ6vjN3uevD3QeKUZst0eG3ociYOzpenDoIfQ7ilWOzqGjxVCoy30f6jhw1ex7e2Jft7SsD6ypD9jSbLViue2GfGWLXYhIS7RtDHFLbdOUoTiVumty6W3Z4c2_Tsjn0-NH9sKWb8-LbL5kgaeyZ1KCN0LJQmuujDDgvTKQWnQz6UxuNAwvgHZKWvBaCceFU6kVXDlIc54nE3L3txsQcdO0obLtcfP_VfILmn1gUA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISSCC.2018.8310397
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1509049401
9781509049400
EISSN 2376-8606
EndPage 490
ExternalDocumentID 8310397
Genre orig-research
GroupedDBID 29G
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-550f9265c88169290ff6907aed45d9b98010908d65a0f862d12d67a216d07b1b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-550f9265c88169290ff6907aed45d9b98010908d65a0f862d12d67a216d07b1b3
PageCount 3
ParticipantIDs ieee_primary_8310397
PublicationCentury 2000
PublicationDate 2018-Feb.
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.
PublicationDecade 2010
PublicationTitle Digest of technical papers - IEEE International Solid-State Circuits Conference
PublicationTitleAbbrev ISSCC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005968
Score 2.522248
Snippet Convolutional neural networks (CNN) provide state-of-the-art results in a wide variety of machine learning (ML) applications, ranging from image classification...
SourceID ieee
SourceType Publisher
StartPage 488
SubjectTerms Computer architecture
Convolution
Convolutional neural networks
Energy efficiency
Linearity
Random access memory
Timing
Title Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications
URI https://ieeexplore.ieee.org/document/8310397
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21PcGFpUXs8oEjTuM0cRJuVUQFSK0QpVJvVRyPEYKmFUpB4sC3YzvpAuLALcou2_I8e96bB3ARdZTrIxOUod-hfir0PKgy31RGDBE1PnCtfKw_4Dcj_24cjGtwudLCIKIln6FjDm0uX86yhdkqa1tTrDisQz0M41KrtaZzxDxaimLcuH07HCaJYW5FTvXUD_sUGz16O9Bffrckjbw4i0I42eevkoz__bFdaK11euR-FYH2oIb5PmxvlBhswpe-9Z0-dPtXpJsTtEo_irZuhH4lGeorxOzFEpwK1JOQJIaHXo1HklnPB9t5RKNb8jr7oHPjq0aSwYCaCCjJ1NIxkVT-E09kMyfeglHv-jG5oZXnAn3WQKKgesGiYo8HWRQxrqGTq5RZP6co_UDGIo4skzOSPEhdpVdDknmSh6nHuHRDwUTnABr5LMdDICnzkKvMExpU-JIpHfdCk0VEjdnQxfQImqYlJ_OyrMakasTjv0-fwJbpzZIwfQqN4m2BZxoPFOLcDoRvl_u2Gw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR4t444ERp0maOAlbFVG10ESItlK3Ko6vEYKmFUpBYuDbsZ30AWJgi_KWbfmea59zD0JXflOYDliMWOA0iZMwOQ-K1FGVET0AiQ9MLR-LYtoZOncjd1RB10stDABo8hkY6lDv5fNpOldLZQ1tihV4G2jTlVmFV6i1VoSOgPoLWYwZNLr9fhgq7pZvlM_9MFDR8aO9i6LFlwvayIsxz5mRfv4qyvjfX9tD9ZVSDz8sY9A-qkB2gHbWigzW0Je89Z08tqIb3MowaK0fAV05Qr4S9-UVrFZjMUwYyGmIY8VEL0ckTrXrg-4-LPEtfp1-kJlyVsNhHBMVAzmeaEIm4NKB4gmv74rX0bB9Owg7pHRdIM8SSuREpiwisKmb-r5FJXgyhVAZdALccXnAAl9zOX1O3cQUMh_ils2pl9gW5abHLNY8RNVsmsERwollAxWpzSSscLglZOTz1D4iSNQGJiTHqKZacjwrCmuMy0Y8-fv0JdrqDKLeuNeN70_RturZgj59hqr52xzOJTrI2YUeFN9Usrls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE+International+Solid-State+Circuits+Conference&rft.atitle=Conv-RAM%3A+An+energy-efficient+SRAM+with+embedded+convolution+computation+for+low-power+CNN-based+machine+learning+applications&rft.au=Biswas%2C+Avishek&rft.au=Chandrakasan%2C+Anantha+P.&rft.date=2018-02-01&rft.pub=IEEE&rft.eissn=2376-8606&rft.spage=488&rft.epage=490&rft_id=info:doi/10.1109%2FISSCC.2018.8310397&rft.externalDocID=8310397