Kernel-Band-Projection Algorithm for Anomaly Detection in Hyperspectral Imagery

The widely-used RX detector (RXD) that was proposed by Reed and Yu has been considered as a benchmark in hyperspectral anomaly detection. Kernel RX detector (KRXD), the nonlinear version of RXD, improves the detection accuracy by mapping the inputting pixel vectors into kernel space. However, this p...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Signal Processing (Print) pp. 300 - 303
Main Authors Yao, Xifeng, Zhao, Chunhui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
ISSN2164-5221
DOI10.1109/ICSP.2018.8652278

Cover

Abstract The widely-used RX detector (RXD) that was proposed by Reed and Yu has been considered as a benchmark in hyperspectral anomaly detection. Kernel RX detector (KRXD), the nonlinear version of RXD, improves the detection accuracy by mapping the inputting pixel vectors into kernel space. However, this processing style with pixels being the mapping subject brings three limitations. 1) More computing time is required for KRXD due to the thorough data kernelization; 2) the sizes of kernelized processing terms are related to the number of background pixels, which limits global processing and real-time design of KRXD; 3) the inverse of kernelized background covariance matrix is usually singular. Therefore, this paper proposes an anomaly detector with bands being the mapping subject. By mapping bands into the kernel space to construct projection matrix in which the Euclidean distance is implemented, comparable detection accuracy with KRXD can be achieved. The inverse operation of kernel projection matrix can be also avoided when the Gaussian kernel function is used. Therefore, the above limitations can be addressed. Experimental results demonstrate the effectiveness of the proposed algorithm.
AbstractList The widely-used RX detector (RXD) that was proposed by Reed and Yu has been considered as a benchmark in hyperspectral anomaly detection. Kernel RX detector (KRXD), the nonlinear version of RXD, improves the detection accuracy by mapping the inputting pixel vectors into kernel space. However, this processing style with pixels being the mapping subject brings three limitations. 1) More computing time is required for KRXD due to the thorough data kernelization; 2) the sizes of kernelized processing terms are related to the number of background pixels, which limits global processing and real-time design of KRXD; 3) the inverse of kernelized background covariance matrix is usually singular. Therefore, this paper proposes an anomaly detector with bands being the mapping subject. By mapping bands into the kernel space to construct projection matrix in which the Euclidean distance is implemented, comparable detection accuracy with KRXD can be achieved. The inverse operation of kernel projection matrix can be also avoided when the Gaussian kernel function is used. Therefore, the above limitations can be addressed. Experimental results demonstrate the effectiveness of the proposed algorithm.
Author Yao, Xifeng
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Xifeng
  surname: Yao
  fullname: Yao, Xifeng
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Chunhui
  surname: Zhao
  fullname: Zhao, Chunhui
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
BookMark eNotj9FKwzAYRqMouM09gHjTF2jNnzRpdlnrdMXBBur1SNM_M6NNS9qbvr0De3XgO_DBWZI733kk5AloAkA3L2XxdUwYBZUoKRjL1A1ZguBKpjLj9JYsGMg0vhp4IOthuFBKOSgluVyQwycGj038qn0dH0N3QTO6zkd5c-6CG3_byHYhyn3X6maK3nCcvfPRbuoxDP11CLqJylafMUyP5N7qZsD1zBX5ed9-F7t4f_goi3wfO8jEGAueVkKgsgBZbUXGZL0xSjOja840NaaiigrDeWW5rZlVKI3klYHUQl1ZwVfk-f_XIeKpD67VYTrN_fwPO5xRwQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSP.2018.8652278
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538646730
9781538646717
9781538646731
1538646714
EISSN 2164-5221
EndPage 303
ExternalDocumentID 8652278
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-534b55e8f117df5726d9c8a2cad32a0ccb0805c33bf3fd2f8e6c63bc14f1dbf53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:56:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-534b55e8f117df5726d9c8a2cad32a0ccb0805c33bf3fd2f8e6c63bc14f1dbf53
PageCount 4
ParticipantIDs ieee_primary_8652278
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle International Conference on Signal Processing (Print)
PublicationTitleAbbrev ICSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188636
Score 1.6960987
Snippet The widely-used RX detector (RXD) that was proposed by Reed and Yu has been considered as a benchmark in hyperspectral anomaly detection. Kernel RX detector...
SourceID ieee
SourceType Publisher
StartPage 300
SubjectTerms Anomaly detection
Covariance matrices
Detectors
fast algorithms
hyperspectral image
Hyperspectral imaging
Kernel
kernel band projection
Real-time systems
Title Kernel-Band-Projection Algorithm for Anomaly Detection in Hyperspectral Imagery
URI https://ieeexplore.ieee.org/document/8652278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cARt0m8xDmWQlVAQCWo1FsVjx2oSBMUpYfy9TgLZREHbpYty5bH0jyP35tB6MzCehZ4WhBgGgjTniaBJ4FIRR3FXZ96ULIt7sVowm6mfNpA52stjDGmJJ-ZbtEs__J1CssiVNaTghfKzSZq-n5QabXW8RR7N6Wgov64dJ2gdz14HBfcLdmt5_0ooFL6j-EWuvtcuaKNvHaXuerC-6-kjP_d2jbqfCn18Hjtg3ZQwyS7aPNbksE2erg1WWJichEmmoyrwIs1Bu7Hz2k2z18W2OJW3E_SRRiv8KXJ6_F5gkf2kVppMbMwxteLIt_FqoMmw6unwYjUZRTI3GKDnHDKFOdGRq7r64j7ntAByNCDUFMvdACURY0cKFURjbQXSSNAUAUui1ytIk73UCtJE7OPsNDSoREFA5Qx44BiRigLYkzoaAeEe4DaxdHM3qpMGbP6VA7_7j5CG4V5KjrdMWrl2dKcWBefq9PSth80tqgU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4QD-rFBY27c_BoYWa60DkiSkAWSYSEG5m-dpQIM2YyHPDX21nEJR68NW2aNn1N3vdev-8VoWsD66nnKo6BKsBUuQp7rgAsJLElc-rEhYxtMeDtMX2YsEkJ3ay1MFrrjHymq2kze8tXESzTVFlNcJYqNzfQJjNRRT1Xa60zKuZ2Ck548XTp2F6t03wapuwtUS1m_vhCJfMgrV3U_1w7J468VpeJrML7r7KM_93cHjr80upZw7UX2kclHR6gnW9lBivosavjUM_xrR8qPMxTL8YcVmP-HMWz5GVhGeRqNcJo4c9X1p1OivFZaLVNmJqrMWN_bnUWacWL1SEat-5HzTYuPlLAM4MOEswIlYxpEThOXQWs7nLlgfBd8BVxfRtAGtzIgBAZkEC5gdAcOJHg0MBRMmDkCJXDKNTHyOJK2CQgoIFQqm2QVHNpYIz2bWUDd05QJT2a6VteK2NanMrp391XaKs96vemvc6ge4a2U1Pl5LpzVE7ipb4wDj-Rl5mdPwA2latl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+%28Print%29&rft.atitle=Kernel-Band-Projection+Algorithm+for+Anomaly+Detection+in+Hyperspectral+Imagery&rft.au=Yao%2C+Xifeng&rft.au=Zhao%2C+Chunhui&rft.date=2018-08-01&rft.pub=IEEE&rft.eissn=2164-5221&rft.spage=300&rft.epage=303&rft_id=info:doi/10.1109%2FICSP.2018.8652278&rft.externalDocID=8652278