A family of adaptive penalty schemes for steady-state genetic algorithms

Real world engineering optimization problems are often subject to constraints which are complex implicit functions of the design variables. Frequently, such constrained problems are replaced by unconstrained ones by means of penalty functions. A family of adaptive penalty schemes for steady-state ge...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE Congress on Evolutionary Computation pp. 1 - 8
Main Authors Lemonge, A. C. C., Barbosa, H. J. C., Bernardino, H. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2012
Subjects
Online AccessGet full text
ISBN1467315109
9781467315104
ISSN1089-778X
DOI10.1109/CEC.2012.6256173

Cover

Abstract Real world engineering optimization problems are often subject to constraints which are complex implicit functions of the design variables. Frequently, such constrained problems are replaced by unconstrained ones by means of penalty functions. A family of adaptive penalty schemes for steady-state genetic algorithms is proposed here. For each constraint, a penalty parameter is adaptively computed along the run according to information extracted from the current population, such as the existence of feasible individuals and the level of violation of each constraint. The performance of each variant in the family is examined using test problems from the evolutionary computation as well as mechanical and structural optimization literature.
AbstractList Real world engineering optimization problems are often subject to constraints which are complex implicit functions of the design variables. Frequently, such constrained problems are replaced by unconstrained ones by means of penalty functions. A family of adaptive penalty schemes for steady-state genetic algorithms is proposed here. For each constraint, a penalty parameter is adaptively computed along the run according to information extracted from the current population, such as the existence of feasible individuals and the level of violation of each constraint. The performance of each variant in the family is examined using test problems from the evolutionary computation as well as mechanical and structural optimization literature.
Author Lemonge, A. C. C.
Bernardino, H. S.
Barbosa, H. J. C.
Author_xml – sequence: 1
  givenname: A. C. C.
  surname: Lemonge
  fullname: Lemonge, A. C. C.
  email: afonso.lemonge@ufjf.edu.br
  organization: Univ. Fed. de Juiz de Fora, Juiz de Fora, Brazil
– sequence: 2
  givenname: H. J. C.
  surname: Barbosa
  fullname: Barbosa, H. J. C.
  email: hcbm@lncc.br
  organization: Lab. Nac. de Comput. Cienc., Petrópolis, Brazil
– sequence: 3
  givenname: H. S.
  surname: Bernardino
  fullname: Bernardino, H. S.
  email: hedersb@gmail.com
  organization: Lab. Nac. de Comput. Cienc., Petrópolis, Brazil
BookMark eNo9kE1LAzEYhCNWsK29C17yB7bmzcdm91iWaoWCFwVv5d3smzayH2UThP33FizOZRh4GIZZsFk_9MTYI4g1gCifq221lgLkOpcmB6tu2AJ0bhUYUdjb_3BBZ2wOoigza4uve7aK8VtcZAsAbedst-Eeu9BOfPAcGzyn8EP8TD22aeLRnaijyP0w8pgImymLCRPxI_WUguPYHocxpFMXH9idxzbS6upL9vmy_ah22f799a3a7LMA1qTMSFObpmiku8xWKBRSmbsanAbtMa-LGmuptfLKOeWIvNFl7cCS9yCELNWSPf31BiI6nMfQ4Tgdri-oX9InUNY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2012.6256173
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1467315087
9781467315081
1467315095
9781467315098
EndPage 8
ExternalDocumentID 6256173
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-525b5d8d2c5613a03ae96cb1c414fa6b8bab2443f3cc3ceef549bc17eff100293
IEDL.DBID RIE
ISBN 1467315109
9781467315104
ISSN 1089-778X
IngestDate Wed Aug 27 04:31:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-525b5d8d2c5613a03ae96cb1c414fa6b8bab2443f3cc3ceef549bc17eff100293
PageCount 8
ParticipantIDs ieee_primary_6256173
PublicationCentury 2000
PublicationDate 2012-June
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-June
PublicationDecade 2010
PublicationTitle 2012 IEEE Congress on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781147
ssj0014519
Score 1.8092186
Snippet Real world engineering optimization problems are often subject to constraints which are complex implicit functions of the design variables. Frequently, such...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Electronic mail
Evolutionary computation
Genetic algorithms
Optimization
Shafts
Steady-state
Title A family of adaptive penalty schemes for steady-state genetic algorithms
URI https://ieeexplore.ieee.org/document/6256173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU7vQAlVLH_LQsQkkzstjhUCoElWHIrEh27Fb1EIQhIH--p6dhD7UoVsSRYpjX3J3vu_7DuA2ZELHQlGHU06dwPNjh2tMVtCemVBC-tqCxyeP0XgaPMzCWQ3uDlwYpZQFnynXHNpafprJndkq62Gsjg6X1qEeJ1HB1TrspxjRGttyp6wgGNmUAlzPMIJMZpbUFcUUPVyfVVpP5XlQ1S_7rDcYDgzgy3fLh_3oumKdzqgJk2q4Bdbkzd3lwpUfv5Qc__s-J9D5oveRp4PjOoWaWrWgWfV3IOXn3oLjb2KFbRjfk2I3hGSa8JSvzY-SrBVaYr4nmCSrpdoSjIGJNZy9Y7lKBA3U8CQJf3_JNov8dbntwHQ0fB6MnbIPg7PA4CLHXDUUYZqkvjTZBu9TrlgkhScDL9A8EongAqMEqqmUFMeuMecU0ouV1kbgldEzaKyylToHEjERJCoyd9HAN6XzmPmeZLgSLKbcv4C2mab5upDamJcz1P378iUcmaUqkFtX0Mg3O3WNMUIubqxxfAIDJbQo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEN5BPKgXFHB8m4NHC7RJW3J0GBlUYDzADDcmCYkyymOgHPDXu0kLPsaDt7bTmabJtrub_b5vAW5CLk0sNfUEFdRjfhB7wmCygvbMpZYqMA483ulGrT57HISDHNxuuTBaawc-0xV76Gr5o5la2a2yKsbq6HDpDuyGjLEwZWttd1SsbI1rupPVEKxwSgqv5xhD1geO1hXFFH1cjW_UnrJztqlg1ni1cd-wkK-gkj3uR98V53aaBehsBpyiTd4qq0RW1McvLcf_vtEhlL8IfuR567qOIKenRShsOjyQ7IMvwsE3ucIStO5Iuh9CZoaIkZjbXyWZa7TFZE0wTdYTvSQYBRNnOmvPsZUImqhlShLx_jJbjJPXybIM_eZ9r9Hysk4M3hjDiwSz1VCGo_ooUDbfEDUqNI-U9BXzmRGRrEshMU6ghipFcewGs06p_FgbYyVeOT2G_HQ21SdAIi5ZXUf2LsoCWzyPeeArjivBYyqCUyjZaRrOU7GNYTZDZ39fvoa9Vq_THrYfuk_nsG-XLcVxXUA-Waz0JUYMibxyhvIJqPC3dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=A+family+of+adaptive+penalty+schemes+for+steady-state+genetic+algorithms&rft.au=Lemonge%2C+A.+C.+C.&rft.au=Barbosa%2C+H.+J.+C.&rft.au=Bernardino%2C+H.+S.&rft.date=2012-06-01&rft.pub=IEEE&rft.isbn=9781467315104&rft.issn=1089-778X&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC.2012.6256173&rft.externalDocID=6256173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon