A CNN-based synchronization analysis for epileptic seizure prediction: Inter- and intraindividual generalization properties

We investigate the generalization capability of our proposed CNN-based approach to measure the strength of generalized synchronization in EEG recordings from epilepsy patients. With an in-sample optimization on short-lasting EEG data taken from two recording sites of a single patient we obtain a CNN...

Full description

Saved in:
Bibliographic Details
Published in2008 11th International Workshop on Cellular Neural Networks and Their Applications pp. 92 - 95
Main Authors Krug, D., Elger, C.E., Lehnertz, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2008
Subjects
Online AccessGet full text
ISBN142442089X
9781424420896
ISSN2165-0144
DOI10.1109/CNNA.2008.4588656

Cover

Abstract We investigate the generalization capability of our proposed CNN-based approach to measure the strength of generalized synchronization in EEG recordings from epilepsy patients. With an in-sample optimization on short-lasting EEG data taken from two recording sites of a single patient we obtain a CNN with polynomial-type templates that allows us to approximate the strength of generalized synchronization in continuous long-lasting multichannel EEG recordings from this patient at a high accuracy. In an out-of-sample study we use the same CNN to analyze days of multichannel EEG data from other patients and observe that the strength of generalized synchronization between different brain regions in different patients can be approximated with a sufficient accuracy. These inter- and intraindividual generalization properties render CNN highly attractive for the development of miniaturized seizure prediction devices.
AbstractList We investigate the generalization capability of our proposed CNN-based approach to measure the strength of generalized synchronization in EEG recordings from epilepsy patients. With an in-sample optimization on short-lasting EEG data taken from two recording sites of a single patient we obtain a CNN with polynomial-type templates that allows us to approximate the strength of generalized synchronization in continuous long-lasting multichannel EEG recordings from this patient at a high accuracy. In an out-of-sample study we use the same CNN to analyze days of multichannel EEG data from other patients and observe that the strength of generalized synchronization between different brain regions in different patients can be approximated with a sufficient accuracy. These inter- and intraindividual generalization properties render CNN highly attractive for the development of miniaturized seizure prediction devices.
Author Elger, C.E.
Lehnertz, K.
Krug, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Krug
  fullname: Krug, D.
  organization: Dept. of Epileptology, Bonn Univ., Bonn
– sequence: 2
  givenname: C.E.
  surname: Elger
  fullname: Elger, C.E.
  organization: Dept. of Epileptology, Bonn Univ., Bonn
– sequence: 3
  givenname: K.
  surname: Lehnertz
  fullname: Lehnertz, K.
  organization: Dept. of Epileptology, Bonn Univ., Bonn
BookMark eNo9kN1KAzEQRiO2YFv7AOJNXmDrJJtsNt6V4k-h1BsF70q2mWhkzS7JVmh9ebdYvfoYZs6B-cZkEJqAhFwxmDEG-maxXs9nHKCcCVmWhSzOyJgJLgQHDfn5_1Dq1wEZcVbIDJgQQzI-QhpAKLgg05Q-AIDpQnNVjsj3nPbirDIJLU37sH2PTfAH0_kmUBNMvU8-UddEiq2vse38lib0h11E2ka0fnu8vKXL0GHMesJSH7pofLD-y9udqekbBoym_pO2sWkxdh7TJRk6UyecnnJCXu7vnheP2erpYbmYrzLPlOwyCU5VNpcGpJSMFdC_KUotoaocZ5Zr5AVWSil0Lmc219b228I4VzKQCvIJuf71ekTctNF_mrjfnFrMfwAOEmXf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CNNA.2008.4588656
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424420903
9781424420902
EndPage 95
ExternalDocumentID 4588656
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-50f7bd35a0555116024448950bbf21d29e26eb777eff31d39dd8956aff8105703
IEDL.DBID RIE
ISBN 142442089X
9781424420896
ISSN 2165-0144
IngestDate Wed Aug 27 02:25:20 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900470
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-50f7bd35a0555116024448950bbf21d29e26eb777eff31d39dd8956aff8105703
PageCount 4
ParticipantIDs ieee_primary_4588656
PublicationCentury 2000
PublicationDate 2008-July
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-July
PublicationDecade 2000
PublicationTitle 2008 11th International Workshop on Cellular Neural Networks and Their Applications
PublicationTitleAbbrev CNNA
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969278
ssj0001967035
Score 1.461191
Snippet We investigate the generalization capability of our proposed CNN-based approach to measure the strength of generalized synchronization in EEG recordings from...
SourceID ieee
SourceType Publisher
StartPage 92
SubjectTerms Accuracy
Approximation methods
Electrodes
Electroencephalography
Epilepsy
Synchronization
Time series analysis
Title A CNN-based synchronization analysis for epileptic seizure prediction: Inter- and intraindividual generalization properties
URI https://ieeexplore.ieee.org/document/4588656
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZaJqYCLeItD4y4TZzEidmqiqpCasVApW6VHduoQkqjNhkofx6fk7SAGNhi5-VYzt357r7vELrnMvJTxjwiEp2QUFJFeCI4YVIqJaSJBQNw8nTGJvPweREtWuhhj4XRWrvkM92HQxfLV-u0BFfZAFCV1v5oo3acsAqrdfCncGYXb_S9zakTxNRnkJ8Whg2ui3oJXzR0T3Wb1RFP3-OD0Ww2rLIs6xf-qLziFM-4g6bNkKt8k_d-Wch-uvvF5vjfbzpBvQPED7_sldcpaunsDHWaGg-4_uW76HOI7UAJKDuFtx9Z6sh0K-wmFjWjCbaWL9a5FTBWAKV4q1e7cqNxvoEoEFz5iJ3nkdg7FF5lri5FAwTDbxXzdfPQHMIDG-B57aH5-Ol1NCF1wQayslZIQSLPxFIFkQAWMd9nVv_b3R-PPCkN9RXlmjIt4zjWxgS-CrhS9iwTxiRQbtgLztFRts70BcLGRF4gbHdgLSTgnKOCgfQIA6Zp6tNL1IW5XOYVJ8eynsarv7uv0XGV5wFptjfoqNiU-tYaE4W8c6voC4pjw6s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0sHVrt3ojRIIKiwdIuJF2bQ0xGWSMg_jP2-4D1HjwtnZfXdO99_re-_0eAHdMEDem1EE8VCHyBZaIhZwhKoSUXOiAUwtOHkV0MPGfp2RaA_dbLIxSKk8-U217mMfy5SJeW1dZx6Iqjf2xB_aJ7_ukQGvtPCqMmuVLvrcZzkUxdqnNUPP9CtmFnZBNK8Knsk3LmKfrsE4virpFnmX5yh-1V3LV02-AUTXoIuPkvb3ORDve_OJz_O9XHYHWDuQHX7fq6xjUVHICGlWVB1j-9E3w2YVmoMiqOwlXH0mc0-kW6E3IS04TaGxfqJZGxBgRFMOVmm_WqYLL1MaB7JUPMPc9InOHhPMkr0xRQcHgW8F9XT10aQMEqWV6bYFJ_3HcG6CyZAOaGzskQ8TRgZAe4ZZHzHWpsQDM_o8RRwiNXYmZwlSJIAiU1p4rPSalOUu51qEtOOx4p6CeLBJ1BqDWxPG46faMjWRZ5zCnVn74HlU4dvE5aNq5nC0LVo5ZOY0Xf3ffgoPBeDScDZ-il0twWGR92KTbK1DP0rW6NqZFJm7yFfUF-ybG-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+11th+International+Workshop+on+Cellular+Neural+Networks+and+Their+Applications&rft.atitle=A+CNN-based+synchronization+analysis+for+epileptic+seizure+prediction%3A+Inter-+and+intraindividual+generalization+properties&rft.au=Krug%2C+D.&rft.au=Elger%2C+C.E.&rft.au=Lehnertz%2C+K.&rft.date=2008-07-01&rft.pub=IEEE&rft.isbn=9781424420896&rft.issn=2165-0144&rft.spage=92&rft.epage=95&rft_id=info:doi/10.1109%2FCNNA.2008.4588656&rft.externalDocID=4588656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0144&client=summon