Automatically Selecting the Number of Aggregators for Collective I/O Operations

Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of algorithms published in the field, most current approaches focus on tuning every single application scenario separately and do not offer a cons...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE International Conference on Cluster Computing pp. 428 - 437
Main Authors Chaarawi, M., Gabriel, E.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2011
Subjects
Online AccessGet full text
ISBN9781457713552
1457713551
ISSN1552-5244
DOI10.1109/CLUSTER.2011.79

Cover

Abstract Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of algorithms published in the field, most current approaches focus on tuning every single application scenario separately and do not offer a consistent and automatic method of identifying internal parameters for collective I/O algorithms. Most notably, published work exists to optimize the number of processes actually touching a file, the so-called aggregators. This paper introduces a novel runtime approach to determine the number of aggregator processes to be used in a collective I/O operation depending on the file view, process topology, the per-process write saturation point, and the actual amount of data written in a collective write operation. The algorithm is evaluated on two different file systems with multiple benchmarks. In more than 80% of the test cases, our algorithm delivered a performance close to the best performance obtained by hand-tuning the number of aggregators for each scenario.
AbstractList Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of algorithms published in the field, most current approaches focus on tuning every single application scenario separately and do not offer a consistent and automatic method of identifying internal parameters for collective I/O algorithms. Most notably, published work exists to optimize the number of processes actually touching a file, the so-called aggregators. This paper introduces a novel runtime approach to determine the number of aggregator processes to be used in a collective I/O operation depending on the file view, process topology, the per-process write saturation point, and the actual amount of data written in a collective write operation. The algorithm is evaluated on two different file systems with multiple benchmarks. In more than 80% of the test cases, our algorithm delivered a performance close to the best performance obtained by hand-tuning the number of aggregators for each scenario.
Author Chaarawi, M.
Gabriel, E.
Author_xml – sequence: 1
  givenname: M.
  surname: Chaarawi
  fullname: Chaarawi, M.
  email: mschaara@cs.uh.edu
  organization: Dept. of Comput. Sci., Univ. of Houston, Houston, TX, USA
– sequence: 2
  givenname: E.
  surname: Gabriel
  fullname: Gabriel, E.
  email: gabriel@cs.uh.edu
  organization: Dept. of Comput. Sci., Univ. of Houston, Houston, TX, USA
BookMark eNotjEFPwjAYQGvEREDOHrz0Dwy-bv3a7kgWRBLiEoEzWbtvc2aspBsm_HuJ-i7v8vImbNT5jhh7FjAXAtJFtj3s9quPeQxCzHV6xyagVYoShcJ7Nku1ERK1FgliPGJjcVOEsZSPbNb3X3BDKWNSGLN8eRn8qRgaV7Ttle-oJTc0Xc2HT-Lvl5OlwH3Fl3UdqC4GH3pe-cAz3_6G38Q3i5znZwq3h-_6J_ZQFW1Ps39P2eF1tc_eom2-3mTLbdQIjUMkoUKNWqHT1qIsrSgLqR0IIFLGKgOlLiuw1onEGCRwGgHBpS6JFVCcTNnL37chouM5NKciXI8KlAAtkx8ZiVL2
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CLUSTER.2011.79
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 0769545165
9780769545165
EndPage 437
ExternalDocumentID 6061074
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-40f575765c7bb54db1da47c010ee68b680d7df0bbc13885e0c75050c9c3260e23
IEDL.DBID RIE
ISBN 9781457713552
1457713551
ISSN 1552-5244
IngestDate Wed Aug 27 03:00:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-40f575765c7bb54db1da47c010ee68b680d7df0bbc13885e0c75050c9c3260e23
PageCount 10
ParticipantIDs ieee_primary_6061074
PublicationCentury 2000
PublicationDate 2011-Sept.
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-Sept.
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on Cluster Computing
PublicationTitleAbbrev cluster
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668890
ssib015832626
ssj0037306
Score 1.955477
Snippet Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of...
SourceID ieee
SourceType Publisher
StartPage 428
SubjectTerms aggregator
Bandwidth
Benchmark testing
collective
Heuristic algorithms
Layout
mpi i/o
Runtime
Servers
Topology
Title Automatically Selecting the Number of Aggregators for Collective I/O Operations
URI https://ieeexplore.ieee.org/document/6061074
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx4d7Fe77UiIBI2ACZJwI233RoyGEdkO-tf72m6QGA_etiVLtvb19fte3_ceIXeZkFzILHI44GpCh-c5AjcGJ2AycCFBRqZ0QH8y5eNF-LRkywa532thAMAkn0FPX5qz_DRXpQ6V9RFs6_zBJmlGMbdardp2PIamySsoYb0wj43G03rlAC3ZKI0Y0-QrDI3Ii0W6Qx3z6tpP1b1f1QDy3KQ_fF7MEVjaYp8m4evQhMXsQaM2mdRfb1NP3ntlIXvq-1dhx__-3jHpHtR-9GW_j52QBmxOSbtu90Cr1d8hs0FZ5KbCq_j4-KJz00EH36CIIenUdBaheUYHa6Twa83ldxQRMTWhCeNV6WN_RmdbsEa365LF6OF1OHaqfgzOG4KMAqlmhuAu4kxFUrIwlV4qwkghowPgseSxm0Zp5kqpvCCOGbgK4QhzVaJwalzwgzPS2uQbOCcUJ4wrJtNYKB4mPogs0cTRl5lE_BHIC9LR47Pa2pIbq2poLv9-fEWObKhXp35dk1bxWcINYoVC3hoj-QFG97Ut
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECsZv9-DRQkt3t-2REAkoHyZAwo10t1tjJJRIe9Bf7-y2hcR48NY2adLuzs6-NztvBuAhDgUPRexZXOFqQofnWCFuDJbLhGurABmZ1AH90Zj35_R5wRYVeNxpYZRSJvlMNfWlOcuPEpnpUFkLwbbOHzyAQ0YpZblaq7Qeh6Fx8gJM5H6Y-0blmftlF23ZaI0Y0_SLUiPzYp7uUcecsvpTcd8uqgA5dtDqDudThJZ5uU-T8rVvw2J2oV4NRuX358knH80sFU35_au0439_8AQae70fed3tZKdQUeszqJUNH0ix_usw6WRpYmq8hqvVF5maHjr4BkEUScamtwhJYtJ5QxL_ptn8liAmJiY4YfwqGbQmZLJRudltGzDvPc26favoyGC9I8xIkWzGCO88zqQnBKORcKKQehI5nVLcF9y3Iy-KbSGk4_o-U7ZEQMJsGUicGlu13XOorpO1ugCCE8YlE5EfSk6DtgrjQFPHtogFIhBXXEJdj89ykxfdWBZDc_X343s46s9Gw-VwMH65huM88KsTwW6gmn5m6haRQyrujMH8APsSuHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Cluster+Computing&rft.atitle=Automatically+Selecting+the+Number+of+Aggregators+for+Collective+I%2FO+Operations&rft.au=Chaarawi%2C+M.&rft.au=Gabriel%2C+E.&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781457713552&rft.issn=1552-5244&rft.spage=428&rft.epage=437&rft_id=info:doi/10.1109%2FCLUSTER.2011.79&rft.externalDocID=6061074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5244&client=summon