Application of random forest algorithm to classify vehicles detected by a multiple inductive loop system

This paper presents a suitable algorithm to classify vehicles detected by a multiple inductive loop system, developed for measuring traffic parameters in a heterogeneous and no-lane disciplined traffic. The proposed classification scheme employs Random Forest (RF) algorithm. This scheme is suited no...

Full description

Saved in:
Bibliographic Details
Published in2012 15th International IEEE Conference on Intelligent Transportation Systems pp. 491 - 495
Main Authors S., Sheik Mohammed Ali, Joshi, Niranjan, George, Boby, Vanajakshi, Lelitha
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN9781467330640
1467330647
ISSN2153-0009
DOI10.1109/ITSC.2012.6338719

Cover

Abstract This paper presents a suitable algorithm to classify vehicles detected by a multiple inductive loop system, developed for measuring traffic parameters in a heterogeneous and no-lane disciplined traffic. The proposed classification scheme employs Random Forest (RF) algorithm. This scheme is suited not only for classifying the detected vehicles as bicycle, motorcycle, scooter, car and bus but also for counting them accurately under a mixed traffic condition. The algorithm has been implemented and tested. Its performance has also been compared with other algorithms based on threshold values and signature patterns. The threshold, signature and RF based algorithms use the number of loops a vehicle occupies as an important factor for classification. Results from a prototype system developed show that the RF based algorithm provides better accuracy compared to the threshold based and signature based methods.
AbstractList This paper presents a suitable algorithm to classify vehicles detected by a multiple inductive loop system, developed for measuring traffic parameters in a heterogeneous and no-lane disciplined traffic. The proposed classification scheme employs Random Forest (RF) algorithm. This scheme is suited not only for classifying the detected vehicles as bicycle, motorcycle, scooter, car and bus but also for counting them accurately under a mixed traffic condition. The algorithm has been implemented and tested. Its performance has also been compared with other algorithms based on threshold values and signature patterns. The threshold, signature and RF based algorithms use the number of loops a vehicle occupies as an important factor for classification. Results from a prototype system developed show that the RF based algorithm provides better accuracy compared to the threshold based and signature based methods.
Author George, Boby
Joshi, Niranjan
Vanajakshi, Lelitha
S., Sheik Mohammed Ali
Author_xml – sequence: 1
  givenname: Sheik Mohammed Ali
  surname: S.
  fullname: S., Sheik Mohammed Ali
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 2
  givenname: Niranjan
  surname: Joshi
  fullname: Joshi, Niranjan
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 3
  givenname: Boby
  surname: George
  fullname: George, Boby
  email: boby@ee.iitm.ac.in
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 4
  givenname: Lelitha
  surname: Vanajakshi
  fullname: Vanajakshi, Lelitha
  organization: Indian Institute of Technology Madras, Chennai, India
BookMark eNpVkMFKAzEYhCNWsNY-gHjJC2zNv0l2s8dStBYKHqznkiZ_bCS7WTZpYd_egr14mpnvMAzzQCZd7JCQJ2ALANa8bHafq0XJoFxUnKsamhsyb2oFoqo5Zxd2-y8LNiHTEiQvGGPNPZmn9HNxTIESZT0lx2XfB2909rGj0dFBdza21MUBU6Y6fMfB52NLc6Qm6JS8G-kZj94ETNRiRpPR0sNINW1PIfs-IPWdPZnsz0hDjD1NY8rYPpI7p0PC-VVn5Ovtdbd6L7Yf681quS081DIX3KEpL9OsUAqtMugaKRVDC0YDd7yUAK7StXG2ahqh5QGk5EoKZMw5wfmMPP_1ekTc94Nv9TDur1_xX7kUXlA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC.2012.6338719
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781467330633
9781467330626
1467330639
1467330620
EndPage 495
ExternalDocumentID 6338719
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-3fec2842d488ed8cef95580ed1ca13f32511f6a7cfd6994a5b1553854e00ff433
IEDL.DBID RIE
ISBN 9781467330640
1467330647
ISSN 2153-0009
IngestDate Wed Aug 27 02:53:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3fec2842d488ed8cef95580ed1ca13f32511f6a7cfd6994a5b1553854e00ff433
PageCount 5
ParticipantIDs ieee_primary_6338719
PublicationCentury 2000
PublicationDate 2012-Sept.
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-Sept.
PublicationDecade 2010
PublicationTitle 2012 15th International IEEE Conference on Intelligent Transportation Systems
PublicationTitleAbbrev ITSC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818427
ssj0000328630
Score 1.5593683
Snippet This paper presents a suitable algorithm to classify vehicles detected by a multiple inductive loop system, developed for measuring traffic parameters in a...
SourceID ieee
SourceType Publisher
StartPage 491
SubjectTerms Accuracy
Bicycles
Classification algorithms
Detectors
Motorcycles
Radio frequency
Title Application of random forest algorithm to classify vehicles detected by a multiple inductive loop system
URI https://ieeexplore.ieee.org/document/6338719
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qk178Acbf6cGjg0G7bj0aIkETjImQcCNb-54QYSNkmOBfb9sxUOPB27rLtnbb972-732PkFsTVUkdK_TCpB14nMeJJ0EwL1IoDBozztxWdv9Z9Ib8aRSMKuRuWwsDAE58Bg176HL5OlMru1XWFCaeCq3H514YiaJWa7ufYn3hSqsrNzZIxF3HVgNqzBZPS1fXJUJmSXdY2j1txmXGs-XL5uPgtWNFX-3G5oI_Oq844Okekn55y4Xe5L2xypOG-vzl5vjfZzoi9V2JH33ZgtcxqUB6Qg6-uRPWyOR-l9ymGVKDajqbU8NyDZLQePaWLaf5ZE7zjCrLwae4ph8wcTo7qsFmJ0DTZE1jWsoW6TS1_rLmD0tnWbaghY90nQy7D4NOz9s0ZvCmhm3kHkNQBtba2nz9oCMFKIMg8kG3VNxiyGzYgiIOFWohJY-DxHYnigIOvo_IGTsl1TRL4YzQtkIb8wmGic81Q4lhrCLpK2yBoa54Tmp2zsaLwntjvJmui79PX5J9u26FBuyKVPPlCq4NaciTG_e2fAEyDrtX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPKgXH2B8uwePFgq7fezREAkoEBMh4Uba3RkhAiWkmOCvd3dL8REP3rq9tN1t-32z8803hNzqqEqoSKITxHXP4TyKHQE-c0KJvkZjxpndyu72_NaAPw69YYHcbWthAMCKz6BiDm0uXyVyZbbKqr6OpwLj8bnjcc69rFpru6NinOFysys71ljEbc9WDWvMlE8LW9nlB8zQ7iA3fNqM85xnzRXVdv-lYWRf9crmkj96r1joaR6Qbn7TmeLkrbJK44r8-OXn-N-nOiTlryI_-ryFryNSgPkx2f_mT1gi4_uv9DZNkGpcU8mMap6rsYRG09dkOUnHM5omVBoWPsE1fYexVdpRBSY_AYrGaxrRXLhIJ3PjMKv_sXSaJAuaOUmXyaD50G-0nE1rBmei-UbqMASpga2u9PcPKpSAwvNCF1RNRjWGzAQu6EeBROULwSMvNv2JQo-D6yJyxk5IcZ7M4ZTQukQT9fkMY5crhgKDSIbClVgDTV7xjJTMnI0WmfvGaDNd53-fviG7rX63M-q0e08XZM-sYaYIuyTFdLmCK00h0vjavjmfM4u-pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+15th+International+IEEE+Conference+on+Intelligent+Transportation+Systems&rft.atitle=Application+of+random+forest+algorithm+to+classify+vehicles+detected+by+a+multiple+inductive+loop+system&rft.au=S.%2C+Sheik+Mohammed+Ali&rft.au=Joshi%2C+Niranjan&rft.au=George%2C+Boby&rft.au=Vanajakshi%2C+Lelitha&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467330640&rft.issn=2153-0009&rft.spage=491&rft.epage=495&rft_id=info:doi/10.1109%2FITSC.2012.6338719&rft.externalDocID=6338719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0009&client=summon