Influence Maximization Under Partially Observable Environments

The problem of influence maximization is a classic subject to study in the field of network science. It is about finding the top-k important individuals in a network for message dissemination under a particular diffusion model. Each year a number of new research papers are published concerning the s...

Full description

Saved in:
Bibliographic Details
Published inIranian Conference on Electrical Engineering pp. 1984 - 1988
Main Authors Ghafouri, Saeid, Khasteh, Seyed Hossein
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text
ISSN2642-9527
DOI10.1109/IranianCEE.2019.8786657

Cover

Abstract The problem of influence maximization is a classic subject to study in the field of network science. It is about finding the top-k important individuals in a network for message dissemination under a particular diffusion model. Each year a number of new research papers are published concerning the same issue. However, most of these methods can only operate in situations where the whole graph is visible to the algorithm which is an unrealistic assumption in many cases. There are many cases where the induced network model of a natural phenomenon is associated with missing links. Discarding these links will lead to serious drawbacks in the result. In this work, we have extended the current state of the art influence maximization algorithms by adding a link prediction heuristic step prior to the actual run of the algorithm. For the purpose of link prediction, we have used exponential random graph models also known as ERGM due to their probabilistic link prediction capabilities. We have shown that this heuristic can significantly improve the effectiveness of influence maximization algorithms and in a diffusion scenario we can have a larger number of infected nodes using the seed nodes of the influence maximization algorithm.
AbstractList The problem of influence maximization is a classic subject to study in the field of network science. It is about finding the top-k important individuals in a network for message dissemination under a particular diffusion model. Each year a number of new research papers are published concerning the same issue. However, most of these methods can only operate in situations where the whole graph is visible to the algorithm which is an unrealistic assumption in many cases. There are many cases where the induced network model of a natural phenomenon is associated with missing links. Discarding these links will lead to serious drawbacks in the result. In this work, we have extended the current state of the art influence maximization algorithms by adding a link prediction heuristic step prior to the actual run of the algorithm. For the purpose of link prediction, we have used exponential random graph models also known as ERGM due to their probabilistic link prediction capabilities. We have shown that this heuristic can significantly improve the effectiveness of influence maximization algorithms and in a diffusion scenario we can have a larger number of infected nodes using the seed nodes of the influence maximization algorithm.
Author Ghafouri, Saeid
Khasteh, Seyed Hossein
Author_xml – sequence: 1
  givenname: Saeid
  surname: Ghafouri
  fullname: Ghafouri, Saeid
  email: saeidghafouri@email.kntu.ac.ir
  organization: Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Seyed Hossein
  surname: Khasteh
  fullname: Khasteh, Seyed Hossein
  email: khasteh@kntu.ac.ir
  organization: Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
BookMark eNotz09LwzAYgPEoCs7ZT-DBfoHW_Gma5CJI6bQwmQd3Hm-aNxBpU0nrcH56D-703H7w3JKrOEUk5IHRkjFqHrsEMUBs2rbklJlSK13XUl2QzCjNFNeMSar0JVnxuuKFkVzdkGyePymlgmmtjVyRpy764Rtjj_kb_IQx_MISppjvo8OUv0NaAgzDKd_ZGdMR7IB5G48hTXHEuMx35NrDMGN27prsN-1H81psdy9d87wtAlNyKYSHHrkwhmvjkHpFnXWonGW1qUyPzjsvKlvbGtCjF54a1N5XlQCwyKVYk_t_NyDi4SuFEdLpcD4Wfz3HUFQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IranianCEE.2019.8786657
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728115078
1728115078
1728115086
9781728115085
EISSN 2642-9527
EndPage 1988
ExternalDocumentID 8786657
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-3face2399289de0f70dbde7db16949cedfdf34b6b6aefef3f09e8ff443aabe253
IEDL.DBID RIE
IngestDate Wed Aug 27 02:31:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3face2399289de0f70dbde7db16949cedfdf34b6b6aefef3f09e8ff443aabe253
PageCount 5
ParticipantIDs ieee_primary_8786657
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle Iranian Conference on Electrical Engineering
PublicationTitleAbbrev IranianCEE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188895
Score 1.6933224
Snippet The problem of influence maximization is a classic subject to study in the field of network science. It is about finding the top-k important individuals in a...
SourceID ieee
SourceType Publisher
StartPage 1984
SubjectTerms component
ERGM
Influence Maximization
link prediction
Mathematical model
Network theory (graphs)
partially observable environment
Prediction methods
Random processes
Social networking (online)
Title Influence Maximization Under Partially Observable Environments
URI https://ieeexplore.ieee.org/document/8786657
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ734AOM7e_DowsIOu9uLF7IETFAOknAjbWeaEBGMWRL119vuLojGg7dJk6bNzKTTTr9vBuDGhshAxcS-PYCljzLQvkIiP1YJ6xC7BtuO4Dx6iAYTvJ92pxW43XJhmDkHn3HTiflfPq302qXKWknsqrPFVahaoeBqbfMp1jeTRHRLCFc7EK2hPeytintp6hBc1iWK2T_aqORRpH8Ao836BXjkubnOVFN__irN-N8NHkLjm6_njbeR6AgqvDyG_Z1Sg3W4G266kXgj-T5_KemXXt73yBs7B5KLxYf3qPI0rVqwl-5w4Bow6adPvYFf9k7w5_ZCkPmhkZodb9U-qIgDEwekiGNS7Uig0EyGTIgqUpFkwyY0geDEGMRQSsWdbngCteVqyafgYcSxwhBRE9nLEwoKRELaIGmhTKdzBnWnidlrUR5jVirh_O_hC9hz1ijAL5dQy97WfGXjeqauc4N-Afuzp0M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwJBDG4QD-rFBxjf7sGjCwvbfczFC1kCyiIHSLiReXQSIoIxkKi_3pndBR_x4G0yySRNp2k7ne9rAW5MiPREpMg1Dpi7yD3pClTKjURM0sdAY8MSnNN-2Bnh_TgYl-B2w4Uhogx8RjW7zP7y1UKubKmsHke2O1u0BdsBIgY5W2tTUTHWGccsKEBcDY_Vu8bdGyW3ksRiuIxR5Od_DFLJ4kh7H9K1BDl85Km2Woqa_PjVnPG_Ih5A9Yux5ww2segQSjQ_gr1vzQYrcNddzyNxUv42fS4ImE42-cgZWBPis9m78yiyQq2YkZN8Y8FVYdROhq2OW0xPcKcmJVi6vuaSLHPVPKkUeTrylFAUKdEIGTJJSivtowhFyEmT9rXHKNYa0edcUDPwj6E8X8zpBBwMKRLoI0qlTPqETHksVlKjkkzoZvMUKlYTk5e8QcakUMLZ39vXsNMZpr1Jr9t_OIddezM5FOYCysvXFV2aKL8UV9nlfgLqmqqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Iranian+Conference+on+Electrical+Engineering&rft.atitle=Influence+Maximization+Under+Partially+Observable+Environments&rft.au=Ghafouri%2C+Saeid&rft.au=Khasteh%2C+Seyed+Hossein&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=1984&rft.epage=1988&rft_id=info:doi/10.1109%2FIranianCEE.2019.8786657&rft.externalDocID=8786657