CSMSDL: A common sequential dictionary learning algorithm for multi-subject FMRI data sets analysis

Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this c...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Image Processing (ICIP) pp. 4113 - 4117
Main Authors Seghouane, Abd-Krim, Iqbal, Asif
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2017.8297056

Cover

Abstract Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this case. In this paper we propose an algorithm dedicated to multiple-subject fMRI data analysis. The algorithm is named SMSDL for sequential multi-subject dictionary learning and differs from existing dictionary learning algorithms in its dictionary update stage. This algorithm is derived by using a variation of the power algorithm in the dictionary update stage to extract the common information among the multiple-subject fMRI data sets. The results of the proposed dictionary learning algorithm is a set of time courses which are common to the whole group of subjects and an individual spatial response pattern for each of the subjects in the group. The performance of the proposed algorithm are illustrated through a simulation and an application on real fMRI datasets.
AbstractList Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this case. In this paper we propose an algorithm dedicated to multiple-subject fMRI data analysis. The algorithm is named SMSDL for sequential multi-subject dictionary learning and differs from existing dictionary learning algorithms in its dictionary update stage. This algorithm is derived by using a variation of the power algorithm in the dictionary update stage to extract the common information among the multiple-subject fMRI data sets. The results of the proposed dictionary learning algorithm is a set of time courses which are common to the whole group of subjects and an individual spatial response pattern for each of the subjects in the group. The performance of the proposed algorithm are illustrated through a simulation and an application on real fMRI datasets.
Author Seghouane, Abd-Krim
Iqbal, Asif
Author_xml – sequence: 1
  givenname: Abd-Krim
  surname: Seghouane
  fullname: Seghouane, Abd-Krim
  organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
– sequence: 2
  givenname: Asif
  surname: Iqbal
  fullname: Iqbal, Asif
  organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
BookMark eNotkMtOwzAURA0Cibb0AxAb_0CKb-z4wa4KFCK1AlFYV05yU1wlDsTuon9PJLqaxYyOjmZKrnzvkZA7YAsAZh6KvHhfpAzUQqdGsUxekLlRGjJmWAoq05dkknINic6EuSHTEA6MjXsOE1Ll2832af1Il7Tqu673NODvEX10tqW1q6LrvR1OtEU7eOf31Lb7fnDxu6NNP9Du2EaXhGN5wCrS1eajoLWNdoTEQK237Sm4cEuuG9sGnJ9zRr5Wz5_5a7J-eyny5Tpxo2RMuOS1TmvJAYVpZI2ZsKVokCmwWlayZFaMvQEFotEZCmkaY1QFIESpa8Vn5P6f6xBx9zO4bjTfnT_hfx2ZVzA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8297056
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 4117
ExternalDocumentID 8297056
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-363d82d631e49f6de54ab4fe071a86c6b0a482d91714f85e469f997c1144b8d73
IEDL.DBID RIE
IngestDate Wed Aug 27 01:39:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-363d82d631e49f6de54ab4fe071a86c6b0a482d91714f85e469f997c1144b8d73
PageCount 5
ParticipantIDs ieee_primary_8297056
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.0252097
Snippet Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many...
SourceID ieee
SourceType Publisher
StartPage 4113
SubjectTerms Computational modeling
Data analysis
Dictionaries
dictionary learning
Encoding
Functional magnetic resonance imaging
Functional magnetic resonance imaging (fMRI)
Machine learning
multi-subjects
Sparse matrices
sparsity
Title CSMSDL: A common sequential dictionary learning algorithm for multi-subject FMRI data sets analysis
URI https://ieeexplore.ieee.org/document/8297056
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5taWm73XozKAFjDRFJuJF9TJGIYKA96K93tq01Gg_eNt1ks9mZ7Xwz-80MIRcoZ1AgmMW48Cw_lMyKkggsV6oAulxErjIB_fiBDSb-3TSY1shllQsDADn5DGwzzN_y9VplJlTWMWmgaLDrpB5yVuRqVfEUhBEIRZzK2TJ1ZMpXTNeJOsPecGSIXKFdLvKjm0puTPpNEn9to-CQvNhZKm318atC43_3uUva32l7dFQZpD1Sg9U-aZY4k5a3eNsiqjeOxzf3V_Saor6hHtKCUI2XfUn1Is90EJt3WnaUmFOxnK83i_T5lSLEpTkH0dpm0oRwaD9-HFLDM8VF0i0VZZGTNpn0b596A6tstmAtEEGklsc8zbuaeS74UcI0BL6QfgIIQQRniklH-DgfmYbpCQ8A3eokikKF_pQvuQ69A9JYrVdwSCgIx-Og8WfQ1T6KHw2gdoRSymESRQBHpGXObPZW1NOYlcd1_PfnE7Jj5Fbwuk5JI91kcIZAIJXnuQZ8ApEpsjg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BooaXbpfVmUEKVEiKQcCP7mCIRwUA56K93tq0YjQdvm26y2ezMdr6Z_WaGkCuUMygQ3OK-cC3WkNwK4gAsRyoP6r4IHGUC-lGXt4fsYeSNCuR6kwsDACn5DKpmmL7l64Vam1BZzaSBosHeItseY8zLsrU2ERUEEghG7I27ZSrJ5O-Yjh3UwmbYM1SuRjVf5kc_ldSctEok-tpIxiJ5qa4TWVUfv2o0_nene6TynbhHexuTtE8KMD8gpRxp0vwer8pENftR_65zQ28pahxqIs0o1XjdZ1RP01wHsXyneU-JCRWzyWI5TZ5fKYJcmrIQrdVamiAObUVPITVMU1wkWVGRlzmpkGHrftBsW3m7BWuKGCKxXO5qv6656wALYq7BY0KyGBCECJ8rLm3BcD4wLdNj3wN0rOMgaCj0qJj0dcM9JMX5Yg5HhIKwXR80_g7qmqECoAnUtlBK2VyiCOCYlM2Zjd-yihrj_LhO_v58SXbag6gz7oTdx1Oya2SYsbzOSDFZruEcYUEiL1Jt-AQU9LWF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=CSMSDL%3A+A+common+sequential+dictionary+learning+algorithm+for+multi-subject+FMRI+data+sets+analysis&rft.au=Seghouane%2C+Abd-Krim&rft.au=Iqbal%2C+Asif&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=4113&rft.epage=4117&rft_id=info:doi/10.1109%2FICIP.2017.8297056&rft.externalDocID=8297056