CSMSDL: A common sequential dictionary learning algorithm for multi-subject FMRI data sets analysis
Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this c...
Saved in:
| Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 4113 - 4117 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2381-8549 |
| DOI | 10.1109/ICIP.2017.8297056 |
Cover
| Abstract | Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this case. In this paper we propose an algorithm dedicated to multiple-subject fMRI data analysis. The algorithm is named SMSDL for sequential multi-subject dictionary learning and differs from existing dictionary learning algorithms in its dictionary update stage. This algorithm is derived by using a variation of the power algorithm in the dictionary update stage to extract the common information among the multiple-subject fMRI data sets. The results of the proposed dictionary learning algorithm is a set of time courses which are common to the whole group of subjects and an individual spatial response pattern for each of the subjects in the group. The performance of the proposed algorithm are illustrated through a simulation and an application on real fMRI datasets. |
|---|---|
| AbstractList | Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many problems in fMRI data analysis involve the analysis of multiple-subject fMRI data sets and the existing algorithms do not extend naturally to this case. In this paper we propose an algorithm dedicated to multiple-subject fMRI data analysis. The algorithm is named SMSDL for sequential multi-subject dictionary learning and differs from existing dictionary learning algorithms in its dictionary update stage. This algorithm is derived by using a variation of the power algorithm in the dictionary update stage to extract the common information among the multiple-subject fMRI data sets. The results of the proposed dictionary learning algorithm is a set of time courses which are common to the whole group of subjects and an individual spatial response pattern for each of the subjects in the group. The performance of the proposed algorithm are illustrated through a simulation and an application on real fMRI datasets. |
| Author | Seghouane, Abd-Krim Iqbal, Asif |
| Author_xml | – sequence: 1 givenname: Abd-Krim surname: Seghouane fullname: Seghouane, Abd-Krim organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia – sequence: 2 givenname: Asif surname: Iqbal fullname: Iqbal, Asif organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia |
| BookMark | eNotkMtOwzAURA0Cibb0AxAb_0CKb-z4wa4KFCK1AlFYV05yU1wlDsTuon9PJLqaxYyOjmZKrnzvkZA7YAsAZh6KvHhfpAzUQqdGsUxekLlRGjJmWAoq05dkknINic6EuSHTEA6MjXsOE1Ll2832af1Il7Tqu673NODvEX10tqW1q6LrvR1OtEU7eOf31Lb7fnDxu6NNP9Du2EaXhGN5wCrS1eajoLWNdoTEQK237Sm4cEuuG9sGnJ9zRr5Wz5_5a7J-eyny5Tpxo2RMuOS1TmvJAYVpZI2ZsKVokCmwWlayZFaMvQEFotEZCmkaY1QFIESpa8Vn5P6f6xBx9zO4bjTfnT_hfx2ZVzA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP.2017.8297056 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781509021758 1509021752 |
| EISSN | 2381-8549 |
| EndPage | 4117 |
| ExternalDocumentID | 8297056 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-363d82d631e49f6de54ab4fe071a86c6b0a482d91714f85e469f997c1144b8d73 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 01:39:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-363d82d631e49f6de54ab4fe071a86c6b0a482d91714f85e469f997c1144b8d73 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8297056 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020131 ssj0002269320 |
| Score | 2.0252097 |
| Snippet | Sequential dictionary learning algorithms has gained widespread acceptance in functional magnetic resonance imaging (fMRI) data analysis. However, many... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4113 |
| SubjectTerms | Computational modeling Data analysis Dictionaries dictionary learning Encoding Functional magnetic resonance imaging Functional magnetic resonance imaging (fMRI) Machine learning multi-subjects Sparse matrices sparsity |
| Title | CSMSDL: A common sequential dictionary learning algorithm for multi-subject FMRI data sets analysis |
| URI | https://ieeexplore.ieee.org/document/8297056 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5taWm73XozKAFjDRFJuJF9TJGIYKA96K93tq01Gg_eNt1ks9mZ7Xwz-80MIRcoZ1AgmMW48Cw_lMyKkggsV6oAulxErjIB_fiBDSb-3TSY1shllQsDADn5DGwzzN_y9VplJlTWMWmgaLDrpB5yVuRqVfEUhBEIRZzK2TJ1ZMpXTNeJOsPecGSIXKFdLvKjm0puTPpNEn9to-CQvNhZKm318atC43_3uUva32l7dFQZpD1Sg9U-aZY4k5a3eNsiqjeOxzf3V_Saor6hHtKCUI2XfUn1Is90EJt3WnaUmFOxnK83i_T5lSLEpTkH0dpm0oRwaD9-HFLDM8VF0i0VZZGTNpn0b596A6tstmAtEEGklsc8zbuaeS74UcI0BL6QfgIIQQRniklH-DgfmYbpCQ8A3eokikKF_pQvuQ69A9JYrVdwSCgIx-Og8WfQ1T6KHw2gdoRSymESRQBHpGXObPZW1NOYlcd1_PfnE7Jj5Fbwuk5JI91kcIZAIJXnuQZ8ApEpsjg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BooaXbpfVmUEKVEiKQcCP7mCIRwUA56K93tq0YjQdvm26y2ezMdr6Z_WaGkCuUMygQ3OK-cC3WkNwK4gAsRyoP6r4IHGUC-lGXt4fsYeSNCuR6kwsDACn5DKpmmL7l64Vam1BZzaSBosHeItseY8zLsrU2ERUEEghG7I27ZSrJ5O-Yjh3UwmbYM1SuRjVf5kc_ldSctEok-tpIxiJ5qa4TWVUfv2o0_nene6TynbhHexuTtE8KMD8gpRxp0vwer8pENftR_65zQ28pahxqIs0o1XjdZ1RP01wHsXyneU-JCRWzyWI5TZ5fKYJcmrIQrdVamiAObUVPITVMU1wkWVGRlzmpkGHrftBsW3m7BWuKGCKxXO5qv6656wALYq7BY0KyGBCECJ8rLm3BcD4wLdNj3wN0rOMgaCj0qJj0dcM9JMX5Yg5HhIKwXR80_g7qmqECoAnUtlBK2VyiCOCYlM2Zjd-yihrj_LhO_v58SXbag6gz7oTdx1Oya2SYsbzOSDFZruEcYUEiL1Jt-AQU9LWF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=CSMSDL%3A+A+common+sequential+dictionary+learning+algorithm+for+multi-subject+FMRI+data+sets+analysis&rft.au=Seghouane%2C+Abd-Krim&rft.au=Iqbal%2C+Asif&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=4113&rft.epage=4117&rft_id=info:doi/10.1109%2FICIP.2017.8297056&rft.externalDocID=8297056 |