Comprehensive study of features for subject-independent emotion recognition

In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Sca...

Full description

Saved in:
Bibliographic Details
Published inProceedings of ... International Joint Conference on Neural Networks pp. 3114 - 3121
Main Authors Ashutosh, A., Savitha, R., Suresh, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text
ISSN2161-4407
DOI10.1109/IJCNN.2017.7966244

Cover

Abstract In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Scale-Invariant Feature Transform (SIFT) and the curvelet transforms to extract features from the images on the JAFFE data set. A subset of these features is then selected using the Double Input Symmetrical Relevance (DISR), the Conditional Mutual Information Maximization (CMIM) and the minimum Redundancy maximum Relevance (mRMR) methods. The original feature sets and the subsets are then used to train a PBL-McRBFN classifier. We conduct a subject independent study with 10 cross validations on the JAFFE data set. The average performance of the PBL-McRBFN classifier with the different feature sets and subsets are compared. In general, feature selection methods used along with the feature extraction techniques help to perform emotion recognition more efficiently. It is also observed that the subset of features selected using the mRMR on the features extracted from the SIFT technique (SIFT+mRMR+PBL-McRBFN) is the most discriminative feature subset. A statistical paired t-test also ascertains this observation. We also compare the performance of the SIFT+mRMR+PBL-McRBFN with the other results in the literature for this problem. Performance comparison shows that the SIFT+mRMR+PBL-McRBFN outperforms other state-of-the-art methods in the literature for this problem.
AbstractList In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Scale-Invariant Feature Transform (SIFT) and the curvelet transforms to extract features from the images on the JAFFE data set. A subset of these features is then selected using the Double Input Symmetrical Relevance (DISR), the Conditional Mutual Information Maximization (CMIM) and the minimum Redundancy maximum Relevance (mRMR) methods. The original feature sets and the subsets are then used to train a PBL-McRBFN classifier. We conduct a subject independent study with 10 cross validations on the JAFFE data set. The average performance of the PBL-McRBFN classifier with the different feature sets and subsets are compared. In general, feature selection methods used along with the feature extraction techniques help to perform emotion recognition more efficiently. It is also observed that the subset of features selected using the mRMR on the features extracted from the SIFT technique (SIFT+mRMR+PBL-McRBFN) is the most discriminative feature subset. A statistical paired t-test also ascertains this observation. We also compare the performance of the SIFT+mRMR+PBL-McRBFN with the other results in the literature for this problem. Performance comparison shows that the SIFT+mRMR+PBL-McRBFN outperforms other state-of-the-art methods in the literature for this problem.
Author Suresh, S.
Savitha, R.
Ashutosh, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Ashutosh
  fullname: Ashutosh, A.
  email: ashutosh_adhikari@daiict.ac.in
  organization: Dhirubhai Ambani Inst. of Inf. & Commun. Technol., Gandhinagar, India
– sequence: 2
  givenname: R.
  surname: Savitha
  fullname: Savitha, R.
  email: ramasamysa@i2r.a-star.edu.sg
  organization: Inst. for Infocomm Res., Agency for Sci., Technol. & Res., Singapore, Singapore
– sequence: 3
  givenname: S.
  surname: Suresh
  fullname: Suresh, S.
  email: ssundaram@ntu.edu.sg
  organization: Sch. of Comput. Sci. & Eng., Nanyang Technol. Univ., Singapore, Singapore
BookMark eNotj8tOwzAURA0Cibb0B2DjH0jwvU7seIkiHoWqbGBdJfE1uCJ2FKdI_XuK6GbmrEZn5uwixECM3YDIAYS5W73Um02OAnSujVJYFGdsaXQFpTBCQYV4zmYICrKiEPqKzVPaCYHSGDljr3Xsh5G-KCT_QzxNe3vg0XFHzbQfKXEXR5727Y66KfPB0kDHCBOnPk4-Bj5SFz-D_-Nrduma70TLUy_Yx-PDe_2crd-eVvX9OvOgyymTqCUo1QjU6NBK6chWJSFYS63rCATIDo92aKhordAgnexAlbbVVstOLtjt_64nou0w-r4ZD9vTd_kLod5Qsw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN.2017.7966244
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509061822
1509061827
EISSN 2161-4407
EndPage 3121
ExternalDocumentID 7966244
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-3273166a0272f2d33fed85e21ddebfce1013c299329e4bd0713f3c165db7d73c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3273166a0272f2d33fed85e21ddebfce1013c299329e4bd0713f3c165db7d73c3
PageCount 8
ParticipantIDs ieee_primary_7966244
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.6294302
Snippet In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient...
SourceID ieee
SourceType Publisher
StartPage 3114
SubjectTerms Classification algorithms
Emotion recognition
Feature extraction
feature selection
Gabor filters
Meta-cognitive Radial Basis Function
Mutual information
Projection Based Learning
Redundancy
Transforms
Title Comprehensive study of features for subject-independent emotion recognition
URI https://ieeexplore.ieee.org/document/7966244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWAkaW0ncTNXVKWoFQOVulWxfRYVUoJKsvDrsZ00CMTAZp1kxbLlvLvzu3sAd2lCUY-VDsY8oy5bJYMMFQ80U0xglGTcy_ksV8l8HS028aYD920tDCJ68hmGbujf8nWhKpcqGwnrm1s46kJXTJK6VqsNrhzQHopixunocTFdrRxzS4TNrB_yKR49Zn1YHr5bk0bewqqUofr81ZLxvws7huF3nR55bhHoBDqYn0L_INRAmns7gCdn2uNrTVYnvqUsKQwx6Nt6fhDruZKPSrqcTLBrhXFLgrXID2lpRkU-hPXs4WU6DxoVhWBnXYMy4MyJUyWZjT-ZYZpzg3oSI6P2xyaNQnsnubKgxFmKkdQuajVc0STWUmjBFT-DXl7keA7ERClai3KPNRGKOGPGhZ8TakdUSnoBA7c32_e6Uca22ZbLv81XcOTOp2YPXkOv3Fd4YxG-lLf-aL8AXtCn8A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpI3tJM1cUfUzYmilblVsn0WF1KA2Wfj12EkaBGJgs06yYtly3t353T2ApyjwUPWkcnos8Wy2SjgJSuYoKmmIPEhYIeczj4PRkk9W_qoBz3UtDCIW5DN07bB4y1epzG2qrBsa39zA0REc-5xzv6zWqsMrC7WHsphe1B1PBnFsuVuhW837IaBS4MewBfPDl0vayLubZ8KVn7-aMv53aWfQ-a7UI681Bp1DA7cX0DpINZDq5rZhak07fCvp6qRoKktSTTQWjT33xPiuZJ8Lm5VxNrU0bkawlPkhNdEo3XZgOXxZDEZOpaPgbIxzkDmMWnmqIDERKNVUMaZR9X2knvm1CS3R3EomDSwxGiEXysatmkkv8JUIVcgku4TmNt3iFRDNIzQWaZ9rOIZ-QrUNQPueGXlCeNfQtnuz_ihbZayrbbn52_wIJ6PFfLaejePpLZzasyq5hHfQzHY53hu8z8RDccxfWBWrPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Comprehensive+study+of+features+for+subject-independent+emotion+recognition&rft.au=Ashutosh%2C+A.&rft.au=Savitha%2C+R.&rft.au=Suresh%2C+S.&rft.date=2017-05-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=3114&rft.epage=3121&rft_id=info:doi/10.1109%2FIJCNN.2017.7966244&rft.externalDocID=7966244