Comprehensive study of features for subject-independent emotion recognition
In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Sca...
        Saved in:
      
    
          | Published in | Proceedings of ... International Joint Conference on Neural Networks pp. 3114 - 3121 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2161-4407 | 
| DOI | 10.1109/IJCNN.2017.7966244 | 
Cover
| Abstract | In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Scale-Invariant Feature Transform (SIFT) and the curvelet transforms to extract features from the images on the JAFFE data set. A subset of these features is then selected using the Double Input Symmetrical Relevance (DISR), the Conditional Mutual Information Maximization (CMIM) and the minimum Redundancy maximum Relevance (mRMR) methods. The original feature sets and the subsets are then used to train a PBL-McRBFN classifier. We conduct a subject independent study with 10 cross validations on the JAFFE data set. The average performance of the PBL-McRBFN classifier with the different feature sets and subsets are compared. In general, feature selection methods used along with the feature extraction techniques help to perform emotion recognition more efficiently. It is also observed that the subset of features selected using the mRMR on the features extracted from the SIFT technique (SIFT+mRMR+PBL-McRBFN) is the most discriminative feature subset. A statistical paired t-test also ascertains this observation. We also compare the performance of the SIFT+mRMR+PBL-McRBFN with the other results in the literature for this problem. Performance comparison shows that the SIFT+mRMR+PBL-McRBFN outperforms other state-of-the-art methods in the literature for this problem. | 
    
|---|---|
| AbstractList | In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient human emotion recognition task. We consider three commonly used feature extraction techniques, namely, the Local Binary Patterns (LBP), the Scale-Invariant Feature Transform (SIFT) and the curvelet transforms to extract features from the images on the JAFFE data set. A subset of these features is then selected using the Double Input Symmetrical Relevance (DISR), the Conditional Mutual Information Maximization (CMIM) and the minimum Redundancy maximum Relevance (mRMR) methods. The original feature sets and the subsets are then used to train a PBL-McRBFN classifier. We conduct a subject independent study with 10 cross validations on the JAFFE data set. The average performance of the PBL-McRBFN classifier with the different feature sets and subsets are compared. In general, feature selection methods used along with the feature extraction techniques help to perform emotion recognition more efficiently. It is also observed that the subset of features selected using the mRMR on the features extracted from the SIFT technique (SIFT+mRMR+PBL-McRBFN) is the most discriminative feature subset. A statistical paired t-test also ascertains this observation. We also compare the performance of the SIFT+mRMR+PBL-McRBFN with the other results in the literature for this problem. Performance comparison shows that the SIFT+mRMR+PBL-McRBFN outperforms other state-of-the-art methods in the literature for this problem. | 
    
| Author | Suresh, S. Savitha, R. Ashutosh, A.  | 
    
| Author_xml | – sequence: 1 givenname: A. surname: Ashutosh fullname: Ashutosh, A. email: ashutosh_adhikari@daiict.ac.in organization: Dhirubhai Ambani Inst. of Inf. & Commun. Technol., Gandhinagar, India – sequence: 2 givenname: R. surname: Savitha fullname: Savitha, R. email: ramasamysa@i2r.a-star.edu.sg organization: Inst. for Infocomm Res., Agency for Sci., Technol. & Res., Singapore, Singapore – sequence: 3 givenname: S. surname: Suresh fullname: Suresh, S. email: ssundaram@ntu.edu.sg organization: Sch. of Comput. Sci. & Eng., Nanyang Technol. Univ., Singapore, Singapore  | 
    
| BookMark | eNotj8tOwzAURA0Cibb0B2DjH0jwvU7seIkiHoWqbGBdJfE1uCJ2FKdI_XuK6GbmrEZn5uwixECM3YDIAYS5W73Um02OAnSujVJYFGdsaXQFpTBCQYV4zmYICrKiEPqKzVPaCYHSGDljr3Xsh5G-KCT_QzxNe3vg0XFHzbQfKXEXR5727Y66KfPB0kDHCBOnPk4-Bj5SFz-D_-Nrduma70TLUy_Yx-PDe_2crd-eVvX9OvOgyymTqCUo1QjU6NBK6chWJSFYS63rCATIDo92aKhordAgnexAlbbVVstOLtjt_64nou0w-r4ZD9vTd_kLod5Qsw | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/IJCNN.2017.7966244 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9781509061822 1509061827  | 
    
| EISSN | 2161-4407 | 
    
| EndPage | 3121 | 
    
| ExternalDocumentID | 7966244 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29I 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS  | 
    
| ID | FETCH-LOGICAL-i175t-3273166a0272f2d33fed85e21ddebfce1013c299329e4bd0713f3c165db7d73c3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:17:55 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-3273166a0272f2d33fed85e21ddebfce1013c299329e4bd0713f3c165db7d73c3 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_7966244 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-May | 
    
| PublicationDateYYYYMMDD | 2017-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-May  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Proceedings of ... International Joint Conference on Neural Networks | 
    
| PublicationTitleAbbrev | IJCNN | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0023993 | 
    
| Score | 1.6294302 | 
    
| Snippet | In this paper, we conduct a comprehensive study to identify the most discriminative features that address the interpersonal variability to perform efficient... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 3114 | 
    
| SubjectTerms | Classification algorithms Emotion recognition Feature extraction feature selection Gabor filters Meta-cognitive Radial Basis Function Mutual information Projection Based Learning Redundancy Transforms  | 
    
| Title | Comprehensive study of features for subject-independent emotion recognition | 
    
| URI | https://ieeexplore.ieee.org/document/7966244 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWAkaW0ncTNXVKWoFQOVulWxfRYVUoJKsvDrsZ00CMTAZp1kxbLlvLvzu3sAd2lCUY-VDsY8oy5bJYMMFQ80U0xglGTcy_ksV8l8HS028aYD920tDCJ68hmGbujf8nWhKpcqGwnrm1s46kJXTJK6VqsNrhzQHopixunocTFdrRxzS4TNrB_yKR49Zn1YHr5bk0bewqqUofr81ZLxvws7huF3nR55bhHoBDqYn0L_INRAmns7gCdn2uNrTVYnvqUsKQwx6Nt6fhDruZKPSrqcTLBrhXFLgrXID2lpRkU-hPXs4WU6DxoVhWBnXYMy4MyJUyWZjT-ZYZpzg3oSI6P2xyaNQnsnubKgxFmKkdQuajVc0STWUmjBFT-DXl7keA7ERClai3KPNRGKOGPGhZ8TakdUSnoBA7c32_e6Uca22ZbLv81XcOTOp2YPXkOv3Fd4YxG-lLf-aL8AXtCn8A | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpI3tJM1cUfUzYmilblVsn0WF1KA2Wfj12EkaBGJgs06yYtly3t353T2ApyjwUPWkcnos8Wy2SjgJSuYoKmmIPEhYIeczj4PRkk9W_qoBz3UtDCIW5DN07bB4y1epzG2qrBsa39zA0REc-5xzv6zWqsMrC7WHsphe1B1PBnFsuVuhW837IaBS4MewBfPDl0vayLubZ8KVn7-aMv53aWfQ-a7UI681Bp1DA7cX0DpINZDq5rZhak07fCvp6qRoKktSTTQWjT33xPiuZJ8Lm5VxNrU0bkawlPkhNdEo3XZgOXxZDEZOpaPgbIxzkDmMWnmqIDERKNVUMaZR9X2knvm1CS3R3EomDSwxGiEXysatmkkv8JUIVcgku4TmNt3iFRDNIzQWaZ9rOIZ-QrUNQPueGXlCeNfQtnuz_ihbZayrbbn52_wIJ6PFfLaejePpLZzasyq5hHfQzHY53hu8z8RDccxfWBWrPQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Comprehensive+study+of+features+for+subject-independent+emotion+recognition&rft.au=Ashutosh%2C+A.&rft.au=Savitha%2C+R.&rft.au=Suresh%2C+S.&rft.date=2017-05-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=3114&rft.epage=3121&rft_id=info:doi/10.1109%2FIJCNN.2017.7966244&rft.externalDocID=7966244 |