Hybrid Artificial Bee Colony algorithm for neural network training
A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional tra...
Saved in:
| Published in | 2011 IEEE Congress of Evolutionary Computation (CEC) pp. 84 - 88 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.06.2011
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1424478340 9781424478347 |
| ISSN | 1089-778X |
| DOI | 10.1109/CEC.2011.5949602 |
Cover
| Abstract | A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional training algorithms might get stuck in local minima and the global search techniques might catch global minima very slow. Therefore, hybrid models combining global search algorithms and conventional techniques are employed to train neural networks. In this work, ABC algorithm is hybridized with the LM algorithm to apply training neural networks. |
|---|---|
| AbstractList | A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional training algorithms might get stuck in local minima and the global search techniques might catch global minima very slow. Therefore, hybrid models combining global search algorithms and conventional techniques are employed to train neural networks. In this work, ABC algorithm is hybridized with the LM algorithm to apply training neural networks. |
| Author | Karaboga, Dervis Ozturk, Celal |
| Author_xml | – sequence: 1 givenname: Celal surname: Ozturk fullname: Ozturk, Celal email: celal@erciyes.edu.tr organization: Comput. Eng. Dept., Erciyes Univ., Kayseri, Turkey – sequence: 2 givenname: Dervis surname: Karaboga fullname: Karaboga, Dervis email: karaboga@erciyes.edu.tr organization: Comput. Eng. Dept., Erciyes Univ., Kayseri, Turkey |
| BookMark | eNo1kE1LAzEYhCNWsK17F7zkD-yar83HsV2qFQpeFLyVNPumRreJZFdk_70L1rkMwwPDMAs0iykCQreUVJQSc99smooRSqvaCCMJu0CFUZoKJoTSvBaXaPEfBJmhOSXalErpt2tU9P0HmSSl4TWZo_V2POTQ4lUegg8u2A6vAXCTuhRHbLtjymF4P2GfMo7wnSceYfhJ-RMP2YYY4vEGXXnb9VCcfYleHzYvzbbcPT8-NatdGaiqh5IBVzCtNZZxK2VriWqllTVxXjOvWss0E63xjEviuHACJLfuoAR1iknK-BLd_fUGANh_5XCyedyfL-C_Kk1OJw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC.2011.5949602 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9781424478354 1424478332 9781424478330 1424478359 |
| EndPage | 88 |
| ExternalDocumentID | 5949602 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 |
| ID | FETCH-LOGICAL-i175t-2e37e9609a23a66da07d6a650cf82f7da2824d9f2360c34c4e63acb741c726123 |
| IEDL.DBID | RIE |
| ISBN | 1424478340 9781424478347 |
| ISSN | 1089-778X |
| IngestDate | Wed Aug 27 02:58:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-2e37e9609a23a66da07d6a650cf82f7da2824d9f2360c34c4e63acb741c726123 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_5949602 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-June |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 IEEE Congress of Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669350 ssj0014519 |
| Score | 2.2268372 |
| Snippet | A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 84 |
| SubjectTerms | Approximation algorithms Artificial bee colony algorithm Artificial neural networks Evolutionary computation Hybrid algorithms Levenberq-Marquardt algorithm Neural network training Neurons Simulated annealing Training |
| Title | Hybrid Artificial Bee Colony algorithm for neural network training |
| URI | https://ieeexplore.ieee.org/document/5949602 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTrAU2iK-5YGRtGnsxPFIq1YVUhEDlbpVjnOBCkhRlQ7l13POFx9iYEviIYnl-F7u3XsHcI0DTCwd54Sa-46IFHe0h9KJjJCRVezp3MB0dh9M5-Ju4S8acFNrYRAxLz7Dnj3Mufx4bbY2Vdb3lSDATRvungyDQqtV51ModCpuGbqSQbC2KUVxvSIEGS4qUZdtLFF7PZXnsuIvXdUfjUeFsWd5sx9dV_KgM2nBrHrcotbkpbfNop75-OXk-N_3OYTul7yPPdSB6wgamLahVfV3YOXn3oaDb2aFHRhOd1bdxW43eXkRrVs2RGQj2j3THdOvT-vNKnt-Y4SCmXXJpPG0qDFnVR-KLswn48fR1Ck7MDgrghWZ4yGXaD3ptMd1EMTalXGgCdSZJPQSGWv6YROxSjweuIYLIzDg2kSEUoy03mT8GJrpOsUTYFxqP3YpFCYKRcgTnWjEAYXKgXW1i9UpdOwELd8Lk41lOTdnf18-h_0iuWvTIRfQzDZbvCR0kEVX-bL4BBOTsSo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0QPKgXFDB-uwePFkp3222P0kCqAvEACTey3U6VqMWQcsBf726__IgHb2330Haz3XmdN-8NwDX2MNZ0nOEKahss9KghLORGKBkPtWJPZAam44kTzNj93J7X4KbSwiBiVnyGHX2YcfnRSm50qqxre0wBbrXh7tiMMTtXa1UZFRU8Pao5uoJD0MYpeXm9pzCkOy9lXbq1ROX2VJzzksE0va4_8HNrz-J2P_quZGFn2IBx-cB5tclLZ5OGHfnxy8vxv290AO0vgR95rELXIdQwaUKj7PBAig--Cfvf7Apb0A-2Wt9FbtdZgZFauaSPSHy1fyZbIl6fVutl-vxGFA4m2idTjSd5lTkpO1G0YTYcTP3AKHowGEsFLFLDQspRu9IJiwrHiYTJI0coWCdj14p5JNQvG4u82KKOKSmTDB0qZKhwiuTanYweQT1ZJXgMhHJhR6YKhrGHzKWxiAViTwXLnva1i7wTaOkJWrznNhuLYm5O_758BbvBdDxajO4mD2ewl6d6dXLkHOrpeoMXCiuk4WW2RD4Bkmy0dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Congress+of+Evolutionary+Computation+%28CEC%29&rft.atitle=Hybrid+Artificial+Bee+Colony+algorithm+for+neural+network+training&rft.au=Ozturk%2C+Celal&rft.au=Karaboga%2C+Dervis&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424478347&rft.issn=1089-778X&rft.spage=84&rft.epage=88&rft_id=info:doi/10.1109%2FCEC.2011.5949602&rft.externalDocID=5949602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |