Hybrid Artificial Bee Colony algorithm for neural network training

A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional tra...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE Congress of Evolutionary Computation (CEC) pp. 84 - 88
Main Authors Ozturk, Celal, Karaboga, Dervis
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN1424478340
9781424478347
ISSN1089-778X
DOI10.1109/CEC.2011.5949602

Cover

Abstract A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional training algorithms might get stuck in local minima and the global search techniques might catch global minima very slow. Therefore, hybrid models combining global search algorithms and conventional techniques are employed to train neural networks. In this work, ABC algorithm is hybridized with the LM algorithm to apply training neural networks.
AbstractList A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional training algorithms might get stuck in local minima and the global search techniques might catch global minima very slow. Therefore, hybrid models combining global search algorithms and conventional techniques are employed to train neural networks. In this work, ABC algorithm is hybridized with the LM algorithm to apply training neural networks.
Author Karaboga, Dervis
Ozturk, Celal
Author_xml – sequence: 1
  givenname: Celal
  surname: Ozturk
  fullname: Ozturk, Celal
  email: celal@erciyes.edu.tr
  organization: Comput. Eng. Dept., Erciyes Univ., Kayseri, Turkey
– sequence: 2
  givenname: Dervis
  surname: Karaboga
  fullname: Karaboga, Dervis
  email: karaboga@erciyes.edu.tr
  organization: Comput. Eng. Dept., Erciyes Univ., Kayseri, Turkey
BookMark eNo1kE1LAzEYhCNWsK17F7zkD-yar83HsV2qFQpeFLyVNPumRreJZFdk_70L1rkMwwPDMAs0iykCQreUVJQSc99smooRSqvaCCMJu0CFUZoKJoTSvBaXaPEfBJmhOSXalErpt2tU9P0HmSSl4TWZo_V2POTQ4lUegg8u2A6vAXCTuhRHbLtjymF4P2GfMo7wnSceYfhJ-RMP2YYY4vEGXXnb9VCcfYleHzYvzbbcPT8-NatdGaiqh5IBVzCtNZZxK2VriWqllTVxXjOvWss0E63xjEviuHACJLfuoAR1iknK-BLd_fUGANh_5XCyedyfL-C_Kk1OJw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2011.5949602
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781424478354
1424478332
9781424478330
1424478359
EndPage 88
ExternalDocumentID 5949602
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-2e37e9609a23a66da07d6a650cf82f7da2824d9f2360c34c4e63acb741c726123
IEDL.DBID RIE
ISBN 1424478340
9781424478347
ISSN 1089-778X
IngestDate Wed Aug 27 02:58:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2e37e9609a23a66da07d6a650cf82f7da2824d9f2360c34c4e63acb741c726123
PageCount 5
ParticipantIDs ieee_primary_5949602
PublicationCentury 2000
PublicationDate 2011-June
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-June
PublicationDecade 2010
PublicationTitle 2011 IEEE Congress of Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669350
ssj0014519
Score 2.2268372
Snippet A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks...
SourceID ieee
SourceType Publisher
StartPage 84
SubjectTerms Approximation algorithms
Artificial bee colony algorithm
Artificial neural networks
Evolutionary computation
Hybrid algorithms
Levenberq-Marquardt algorithm
Neural network training
Neurons
Simulated annealing
Training
Title Hybrid Artificial Bee Colony algorithm for neural network training
URI https://ieeexplore.ieee.org/document/5949602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTrAU2iK-5YGRtGnsxPFIq1YVUhEDlbpVjnOBCkhRlQ7l13POFx9iYEviIYnl-F7u3XsHcI0DTCwd54Sa-46IFHe0h9KJjJCRVezp3MB0dh9M5-Ju4S8acFNrYRAxLz7Dnj3Mufx4bbY2Vdb3lSDATRvungyDQqtV51ModCpuGbqSQbC2KUVxvSIEGS4qUZdtLFF7PZXnsuIvXdUfjUeFsWd5sx9dV_KgM2nBrHrcotbkpbfNop75-OXk-N_3OYTul7yPPdSB6wgamLahVfV3YOXn3oaDb2aFHRhOd1bdxW43eXkRrVs2RGQj2j3THdOvT-vNKnt-Y4SCmXXJpPG0qDFnVR-KLswn48fR1Ck7MDgrghWZ4yGXaD3ptMd1EMTalXGgCdSZJPQSGWv6YROxSjweuIYLIzDg2kSEUoy03mT8GJrpOsUTYFxqP3YpFCYKRcgTnWjEAYXKgXW1i9UpdOwELd8Lk41lOTdnf18-h_0iuWvTIRfQzDZbvCR0kEVX-bL4BBOTsSo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0QPKgXFDB-uwePFkp3222P0kCqAvEACTey3U6VqMWQcsBf726__IgHb2330Haz3XmdN-8NwDX2MNZ0nOEKahss9KghLORGKBkPtWJPZAam44kTzNj93J7X4KbSwiBiVnyGHX2YcfnRSm50qqxre0wBbrXh7tiMMTtXa1UZFRU8Pao5uoJD0MYpeXm9pzCkOy9lXbq1ROX2VJzzksE0va4_8HNrz-J2P_quZGFn2IBx-cB5tclLZ5OGHfnxy8vxv290AO0vgR95rELXIdQwaUKj7PBAig--Cfvf7Apb0A-2Wt9FbtdZgZFauaSPSHy1fyZbIl6fVutl-vxGFA4m2idTjSd5lTkpO1G0YTYcTP3AKHowGEsFLFLDQspRu9IJiwrHiYTJI0coWCdj14p5JNQvG4u82KKOKSmTDB0qZKhwiuTanYweQT1ZJXgMhHJhR6YKhrGHzKWxiAViTwXLnva1i7wTaOkJWrznNhuLYm5O_758BbvBdDxajO4mD2ewl6d6dXLkHOrpeoMXCiuk4WW2RD4Bkmy0dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Congress+of+Evolutionary+Computation+%28CEC%29&rft.atitle=Hybrid+Artificial+Bee+Colony+algorithm+for+neural+network+training&rft.au=Ozturk%2C+Celal&rft.au=Karaboga%2C+Dervis&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424478347&rft.issn=1089-778X&rft.spage=84&rft.epage=88&rft_id=info:doi/10.1109%2FCEC.2011.5949602&rft.externalDocID=5949602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon