Research of P300 Feature Extraction Algorithm Based on ICA and Wavelet Transform

A brain-computer interface (BCI) is a system for direct communication between brain and computer. The P300 BCI system relies on an oddball paradigm to elicit the P300. With the aim to extract different P300 feature information from different subjects and reduce the data amount of electroencephalogra...

Full description

Saved in:
Bibliographic Details
Published in2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics Vol. 1; pp. 41 - 45
Main Authors Yupeng Wang, Jizhong Shen, Jianwei Liang, Yu Ji
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2014
Subjects
Online AccessGet full text
ISBN1479949566
9781479949564
DOI10.1109/IHMSC.2014.18

Cover

Abstract A brain-computer interface (BCI) is a system for direct communication between brain and computer. The P300 BCI system relies on an oddball paradigm to elicit the P300. With the aim to extract different P300 feature information from different subjects and reduce the data amount of electroencephalogram (EEG) in P300 classification, a P300 feature extraction algorithm is proposed, which is based on independent component analysis (ICA) and wavelet transform. Firstly, based on the algorithms of ICA and fisher distance, specific channel combinations which to extract features from are selected for different subjects, and different optimal features such as peaks of time domain, peak areas and wavelet coefficients from these specific channel combinations are extracted. Then, a support vector machine (SVM) is used for the classification of P300. Here, the BCI Competition III data set II has been used to verify the method. Compared with the two related literature, for subject A, the proposed method can achieve an accuracy of 85%, which has 6 and 5 percentage point increase respectively and reduce the data amount by 62.5%, and for subject B, achieve an accuracy of 94%, which has 5 and 1 percentage point increase respectively and reduce the data amount by 64.3%. All these verify that the proposed method can select optimal features from both time domain and frequency domain according to specific subjects and reduce the data amount to improve the speed of classification, while achieve an higher accuracy.
AbstractList A brain-computer interface (BCI) is a system for direct communication between brain and computer. The P300 BCI system relies on an oddball paradigm to elicit the P300. With the aim to extract different P300 feature information from different subjects and reduce the data amount of electroencephalogram (EEG) in P300 classification, a P300 feature extraction algorithm is proposed, which is based on independent component analysis (ICA) and wavelet transform. Firstly, based on the algorithms of ICA and fisher distance, specific channel combinations which to extract features from are selected for different subjects, and different optimal features such as peaks of time domain, peak areas and wavelet coefficients from these specific channel combinations are extracted. Then, a support vector machine (SVM) is used for the classification of P300. Here, the BCI Competition III data set II has been used to verify the method. Compared with the two related literature, for subject A, the proposed method can achieve an accuracy of 85%, which has 6 and 5 percentage point increase respectively and reduce the data amount by 62.5%, and for subject B, achieve an accuracy of 94%, which has 5 and 1 percentage point increase respectively and reduce the data amount by 64.3%. All these verify that the proposed method can select optimal features from both time domain and frequency domain according to specific subjects and reduce the data amount to improve the speed of classification, while achieve an higher accuracy.
Author Yu Ji
Jizhong Shen
Jianwei Liang
Yupeng Wang
Author_xml – sequence: 1
  surname: Yupeng Wang
  fullname: Yupeng Wang
  email: wangyupeng@zju.edu.cn
  organization: Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 2
  surname: Jizhong Shen
  fullname: Jizhong Shen
  email: jzshen@zju.edu.cn
  organization: Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 3
  surname: Jianwei Liang
  fullname: Jianwei Liang
  email: mrljwlm@163.com
  organization: Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 4
  surname: Yu Ji
  fullname: Yu Ji
  email: crucianzju@163.com
  organization: Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
BookMark eNo1jMtOwzAQRY2ABS1dsmLjH0iwY8cTL0vUl1REBUUsq4k9oZHyQI5B8PdUAlZX50jnTthFP_TE2I0UqZTC3m3WD89lmgmpU1mcsZmFQmqwVts8h3M2-QdjrtjuiUbC4I58qPlOCcGXhPEjEF98xYAuNkPP5-3bEJp47Pg9juT5SW3KOcfe81f8pJYi3wfsx3oI3TW7rLEdafa3U_ayXOzLdbJ9XJ2ibdJIyGOSIRiDoLyuhBKZrZFIGMpchoSOHOZgVaEqbwlFBUrr3GkPBE6A9bVWU3b7-9sQ0eE9NB2G74OxEpSQ6gfqfE0A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IHMSC.2014.18
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479949557
1479949558
EndPage 45
ExternalDocumentID 6917301
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-2a766a73d4b03029faee06e2c2aeaceca579383bd9ea0b73445c4d7e7c079df43
IEDL.DBID RIE
ISBN 1479949566
9781479949564
IngestDate Wed Jun 26 19:23:55 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2a766a73d4b03029faee06e2c2aeaceca579383bd9ea0b73445c4d7e7c079df43
PageCount 5
ParticipantIDs ieee_primary_6917301
PublicationCentury 2000
PublicationDate 2014-Aug.
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-Aug.
PublicationDecade 2010
PublicationTitle 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics
PublicationTitleAbbrev IHMSC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5928046
Snippet A brain-computer interface (BCI) is a system for direct communication between brain and computer. The P300 BCI system relies on an oddball paradigm to elicit...
SourceID ieee
SourceType Publisher
StartPage 41
SubjectTerms Accuracy
Electroencephalography
Entropy
Feature extraction
Fisher distance
ICA
P300
Time-domain analysis
Wavelet transform
Wavelet transforms
Title Research of P300 Feature Extraction Algorithm Based on ICA and Wavelet Transform
URI https://ieeexplore.ieee.org/document/6917301
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDzaLmvSZDnOsbEJk4Eb7jaS5lWH2kppQfzrTdp1G-LBWxJICPn1viTf9x5CtyBlwCkoTzHKPMaJ9lRXdz1hF0AgiAm0Lgmyj3y8YA_LcNlAd1stDACU5DPwXbL8yzdpVLinsg63dwvqxFoHQsg9rZaQ0uF8Xrtw2uTZzqdmZzKePg0ck4v5Lr7HXiSV0pCMjtC07kLFH3nzi1z70fcv74z_7eMxau8ke3i2NUYnqAFJC81qXh1OYzyjhGCH-IoM8PArzypJA-6_v6TZOn_9wPfWohlsiyaDPlaJwc_KhaXI8bxGt220GA3ng7G3CaHgrS0uyL1ACc6VoIZpu5sDGSsAwiGIAmVPXIhUaPdnj2ojQREtKGNhxIwAEREhTczoKWomaQJnCIfd2LZiAUqPR4wbpoBYLAG2amhIT6tz1HKjsfqsvGSsNgNx8XfxJTp0k1FR6a5QM88KuLbmPdc35bz-ANvgom4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjG2XrWnZEAhkKhESI3Ei7vilRN7NsifGvt90YEOPBW9ukTdNf72v7fe8hdAu-7zAXhCWoSy3KiLREW7YtrheAw4lypCwIshMWzOnDwlvU0N1GCwMABfkMbJMs_vJVEubmqazF9N3CNWKtPU_fKviOWov7vkH6rHLitM7TrVfN1jAYP_UMl4vaJsLHTiyVwpQMDtG46kTJIHmz80za4fcv_4z_7eURam5Fe3i6MUfHqAZxA00rZh1OIjx1CcEG8-Up4P5XlpaiBtx9f0nSVfb6ge-1TVNYFw17XSxihZ-FCUyR4VmFb5toPujPeoG1DqJgrTQyyCxHcMYEdxWVej87fiQACAMndIQ-cyEUnt6hHVcqHwSR3KXUC6niwEPCfRVR9wTV4ySGU4S9dqRb0RClw0LKFBVANJoAXdVTpCPFGWqY0Vh-ln4yluuBOP-7-AbtB7PxaDkaTh4v0IGZmJJYd4nqWZrDlTb2mbwu5vgHmGOlvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Sixth+International+Conference+on+Intelligent+Human-Machine+Systems+and+Cybernetics&rft.atitle=Research+of+P300+Feature+Extraction+Algorithm+Based+on+ICA+and+Wavelet+Transform&rft.au=Yupeng+Wang&rft.au=Jizhong+Shen&rft.au=Jianwei+Liang&rft.au=Yu+Ji&rft.date=2014-08-01&rft.pub=IEEE&rft.isbn=1479949566&rft.volume=1&rft.spage=41&rft.epage=45&rft_id=info:doi/10.1109%2FIHMSC.2014.18&rft.externalDocID=6917301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479949564/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479949564/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479949564/sc.gif&client=summon&freeimage=true