Clustering-based SAR image denoising by sparse representation with KSVD

Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5003 - 5006
Main Authors Yunshu Zhang, Kefeng Ji, Zhipeng Deng, Shilin Zhou, Huanxin Zou
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2016
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS.2016.7730305

Cover

Abstract Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the similar clustered patches, the sparsity coding of clustered patches is sparser. And clustered patches with similar structure could have the same constraint condition defined by the center of clustering. Thus, the non-local patches are clustered and filtered as a whole with shrinked sparsity coding. This algorithm has preferable denoising results on both simulated images and real SAR images. Experiments show prospects with speckle of different degrees compared with state-of-the-art despeckling methods. Proposed algorithm performs well both in noise reduction and detail preservation.
AbstractList Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the similar clustered patches, the sparsity coding of clustered patches is sparser. And clustered patches with similar structure could have the same constraint condition defined by the center of clustering. Thus, the non-local patches are clustered and filtered as a whole with shrinked sparsity coding. This algorithm has preferable denoising results on both simulated images and real SAR images. Experiments show prospects with speckle of different degrees compared with state-of-the-art despeckling methods. Proposed algorithm performs well both in noise reduction and detail preservation.
Author Kefeng Ji
Yunshu Zhang
Shilin Zhou
Huanxin Zou
Zhipeng Deng
Author_xml – sequence: 1
  surname: Yunshu Zhang
  fullname: Yunshu Zhang
  email: yunshuuuzhang@sina.com
  organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 2
  surname: Kefeng Ji
  fullname: Kefeng Ji
  organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 3
  surname: Zhipeng Deng
  fullname: Zhipeng Deng
  organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 4
  surname: Shilin Zhou
  fullname: Shilin Zhou
  organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 5
  surname: Huanxin Zou
  fullname: Huanxin Zou
  organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China
BookMark eNotj9FKwzAYhaMouE6fYDd5gdY_SdO0l6VqHQ6EVb0dSfpnRmZbkors7R24q3Pgg8N3EnI1jAMSsmKQMQbV_bqtt12XcWBFppQAAfKCJExCBUIIri7JgjMpUgUgbkgS49eplBxgQdrm8BNnDH7Yp0ZH7GlXb6n_1nukPQ6jjydCzZHGSYeINOAUMOIw69mPA_318yd96T4ebsm104eId-dckvenx7fmOd28tuum3qSeKTmnXMtcWYDCcSMNz3Nbid6i1SCZcmh7LDnPHdPOmhJlVVa8cKUzVqOQCrlYktX_rkfE3RROpuG4O58WfwbdTkI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2016.7730305
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509033327
9781509033324
EISSN 2153-7003
EndPage 5006
ExternalDocumentID 7730305
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-2a547c006f2b5b244c93dceca0517fecde8224f1afcb8e598926f8fbcae357e23
IEDL.DBID RIE
IngestDate Wed Aug 27 01:44:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2a547c006f2b5b244c93dceca0517fecde8224f1afcb8e598926f8fbcae357e23
PageCount 4
ParticipantIDs ieee_primary_7730305
PublicationCentury 2000
PublicationDate 2016-July
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6388106
Snippet Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a...
SourceID ieee
SourceType Publisher
StartPage 5003
SubjectTerms cluster
Clustering algorithms
Dictionaries
Encoding
Filtering algorithms
Image denoising
non-local
SAR image denoising
sparse representation
Speckle
Synthetic aperture radar
Title Clustering-based SAR image denoising by sparse representation with KSVD
URI https://ieeexplore.ieee.org/document/7730305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zIPjkZRPv5MFH03Vt0zaPY7pNZSKrk72NXL7AUDuZ7cP89Sa9TBQffCspJSVpvpN-Oed8CF2CcEPOqSAuVxEJNOfEwLAiMo5izbhUUaHiHz-Eo2lwN6OzBrraaGEAoCCfgWMvi7N8tZS5TZV1IvM5-tawdCuKw1KrVUdd3yCZW7kKdV3WuR32JkliqVuhUz32o35KAR-DXTSuOy5ZIy9OnglHfv7yZPzvm-2h9rdQDz9uIGgfNSA9QNvDolrvuoWG_dfcGiGYe8TClcJJb4IXbyaGYBNvlgubKMBijU1YWX0ALhwuazVSim2OFt8nz9dtNB3cPPVHpKqcQBZmO5ARj9MgkmZBaU9QYRBcMl9JkNw6cmmQCix5VHe5liIGymLmhTrWQnLwaQSef4ia6TKFI4TNfsAsaxa4vscDGnOhlCvMPwhzBfWlYMeoZYdj_l6aY8yrkTj5u_kU7dgpKfmuZ6iZrXI4N6ieiYtiOr8Aw32jKw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0IxuiTFzDe7YOPFsbWbusjQbnIJYaB4Y30mhB1GNwe8NfbbgOj8cG3pcvSpV2_030953wA3Cru-IwRjhwmA4Q1Y8jAsEQiDEJNmZBBpuIfjvzuFD_OyKwE7rZaGKVURj5TNXuZneXLpUhtqqwemM_Rs4alOwRjTHK11ibuegbLnMJXqOHQeq_THEeRJW_5teLBHxVUMgBpH4DhpuucN_JSSxNeE5-_XBn_-26HoPot1YNPWxA6AiUVH4PdTlavd10BndZraq0QzD1kAUvCqDmGizcTRaCJOMuFTRVAvoYmsKw-FMw8Ljd6pBjaLC3sR8_3VTBtP0xaXVTUTkALsyFIkMsIDoRZUtrlhBsMF9STQglmPbm0ElJZ-qhuMC14qAgNqevrUHPBlEcC5XonoBwvY3UKoNkRmIVNseO5DJOQcSkdbv5CqMOJJzg9AxU7HPP33B5jXozE-d_NN2CvOxkO5oPeqH8B9u305OzXS1BOVqm6Mhif8Otsar8AgBameA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Clustering-based+SAR+image+denoising+by+sparse+representation+with+KSVD&rft.au=Yunshu+Zhang&rft.au=Kefeng+Ji&rft.au=Zhipeng+Deng&rft.au=Shilin+Zhou&rft.date=2016-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5003&rft.epage=5006&rft_id=info:doi/10.1109%2FIGARSS.2016.7730305&rft.externalDocID=7730305