Clustering-based SAR image denoising by sparse representation with KSVD
Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the...
Saved in:
| Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5003 - 5006 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.07.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2153-7003 |
| DOI | 10.1109/IGARSS.2016.7730305 |
Cover
| Abstract | Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the similar clustered patches, the sparsity coding of clustered patches is sparser. And clustered patches with similar structure could have the same constraint condition defined by the center of clustering. Thus, the non-local patches are clustered and filtered as a whole with shrinked sparsity coding. This algorithm has preferable denoising results on both simulated images and real SAR images. Experiments show prospects with speckle of different degrees compared with state-of-the-art despeckling methods. Proposed algorithm performs well both in noise reduction and detail preservation. |
|---|---|
| AbstractList | Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a new SAR image denoising algorithm has been proposed combining cluster with sparse representation under the non-local methodology. Due to the similar clustered patches, the sparsity coding of clustered patches is sparser. And clustered patches with similar structure could have the same constraint condition defined by the center of clustering. Thus, the non-local patches are clustered and filtered as a whole with shrinked sparsity coding. This algorithm has preferable denoising results on both simulated images and real SAR images. Experiments show prospects with speckle of different degrees compared with state-of-the-art despeckling methods. Proposed algorithm performs well both in noise reduction and detail preservation. |
| Author | Kefeng Ji Yunshu Zhang Shilin Zhou Huanxin Zou Zhipeng Deng |
| Author_xml | – sequence: 1 surname: Yunshu Zhang fullname: Yunshu Zhang email: yunshuuuzhang@sina.com organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China – sequence: 2 surname: Kefeng Ji fullname: Kefeng Ji organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China – sequence: 3 surname: Zhipeng Deng fullname: Zhipeng Deng organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China – sequence: 4 surname: Shilin Zhou fullname: Shilin Zhou organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China – sequence: 5 surname: Huanxin Zou fullname: Huanxin Zou organization: Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China |
| BookMark | eNotj9FKwzAYhaMouE6fYDd5gdY_SdO0l6VqHQ6EVb0dSfpnRmZbkors7R24q3Pgg8N3EnI1jAMSsmKQMQbV_bqtt12XcWBFppQAAfKCJExCBUIIri7JgjMpUgUgbkgS49eplBxgQdrm8BNnDH7Yp0ZH7GlXb6n_1nukPQ6jjydCzZHGSYeINOAUMOIw69mPA_318yd96T4ebsm104eId-dckvenx7fmOd28tuum3qSeKTmnXMtcWYDCcSMNz3Nbid6i1SCZcmh7LDnPHdPOmhJlVVa8cKUzVqOQCrlYktX_rkfE3RROpuG4O58WfwbdTkI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IGARSS.2016.7730305 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISBN | 1509033327 9781509033324 |
| EISSN | 2153-7003 |
| EndPage | 5006 |
| ExternalDocumentID | 7730305 |
| Genre | orig-research |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-2a547c006f2b5b244c93dceca0517fecde8224f1afcb8e598926f8fbcae357e23 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 01:44:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-2a547c006f2b5b244c93dceca0517fecde8224f1afcb8e598926f8fbcae357e23 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7730305 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-July |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-July |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
| PublicationTitleAbbrev | IGARSS |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0038200 |
| Score | 1.6388106 |
| Snippet | Speckle existed in SAR image is an undesirable product of specific imaging principle which influences SAR image interpretation and processing. In this paper, a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5003 |
| SubjectTerms | cluster Clustering algorithms Dictionaries Encoding Filtering algorithms Image denoising non-local SAR image denoising sparse representation Speckle Synthetic aperture radar |
| Title | Clustering-based SAR image denoising by sparse representation with KSVD |
| URI | https://ieeexplore.ieee.org/document/7730305 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zIPjkZRPv5MFH03Vt0zaPY7pNZSKrk72NXL7AUDuZ7cP89Sa9TBQffCspJSVpvpN-Oed8CF2CcEPOqSAuVxEJNOfEwLAiMo5izbhUUaHiHz-Eo2lwN6OzBrraaGEAoCCfgWMvi7N8tZS5TZV1IvM5-tawdCuKw1KrVUdd3yCZW7kKdV3WuR32JkliqVuhUz32o35KAR-DXTSuOy5ZIy9OnglHfv7yZPzvm-2h9rdQDz9uIGgfNSA9QNvDolrvuoWG_dfcGiGYe8TClcJJb4IXbyaGYBNvlgubKMBijU1YWX0ALhwuazVSim2OFt8nz9dtNB3cPPVHpKqcQBZmO5ARj9MgkmZBaU9QYRBcMl9JkNw6cmmQCix5VHe5liIGymLmhTrWQnLwaQSef4ia6TKFI4TNfsAsaxa4vscDGnOhlCvMPwhzBfWlYMeoZYdj_l6aY8yrkTj5u_kU7dgpKfmuZ6iZrXI4N6ieiYtiOr8Aw32jKw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0IxuiTFzDe7YOPFsbWbusjQbnIJYaB4Y30mhB1GNwe8NfbbgOj8cG3pcvSpV2_030953wA3Cru-IwRjhwmA4Q1Y8jAsEQiDEJNmZBBpuIfjvzuFD_OyKwE7rZaGKVURj5TNXuZneXLpUhtqqwemM_Rs4alOwRjTHK11ibuegbLnMJXqOHQeq_THEeRJW_5teLBHxVUMgBpH4DhpuucN_JSSxNeE5-_XBn_-26HoPot1YNPWxA6AiUVH4PdTlavd10BndZraq0QzD1kAUvCqDmGizcTRaCJOMuFTRVAvoYmsKw-FMw8Ljd6pBjaLC3sR8_3VTBtP0xaXVTUTkALsyFIkMsIDoRZUtrlhBsMF9STQglmPbm0ElJZ-qhuMC14qAgNqevrUHPBlEcC5XonoBwvY3UKoNkRmIVNseO5DJOQcSkdbv5CqMOJJzg9AxU7HPP33B5jXozE-d_NN2CvOxkO5oPeqH8B9u305OzXS1BOVqm6Mhif8Otsar8AgBameA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Clustering-based+SAR+image+denoising+by+sparse+representation+with+KSVD&rft.au=Yunshu+Zhang&rft.au=Kefeng+Ji&rft.au=Zhipeng+Deng&rft.au=Shilin+Zhou&rft.date=2016-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5003&rft.epage=5006&rft_id=info:doi/10.1109%2FIGARSS.2016.7730305&rft.externalDocID=7730305 |